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CHAPTER 1 

Introduction and Overview 

1.1 Fundamentals of neurochemistry 

 The brain communicates through specialized cells to execute a variety of 

functions. These specialized cells, called neurons, are estimated to number in the 

hundreds of billions in the brain.2 Neurons differ in their structure, chemistry, location 

and connections depending on the specific task they perform in the central nervous 

system (CNS).2 In general, a neuron consists of a cell body (also called a soma), which 

houses the nucleus as well as cytoplasmic organelles and is the site for most cellular 

processes including protein synthesis.2, 3 Extending from the cell body is a single long 

structure called an axon, which terminates in multiple structures known as dendrites. 

The axon is responsible for conducting outgoing neuronal information in the form of an 

electrochemical signal to the nerve terminal to be propagated to another neuron. 

Dendrites receive incoming neuronal information during synaptic communication and 

transmit it to the cell body. 

 Neuronal communication involves both electrical and chemical processes. When 

a neuron is at rest, the inside of the cell is more negative than its surrounding. In this 

state, the neuron is described as being polarized, having a resting potential of -70 mV.2 

During neurotransmission, sodium (Na+) channels located in the membrane open, 

allowing an influx of Na+ ions into the cell causing the inside of the cell to become 

depolarized. During depolarization, an action potential is produced and propagated 

along the length of the axon. This process is described as neuronal firing. In response 

to depolarization, there is a spontaneous and transient opening of the potassium (K+) 
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channels causing K+ efflux to re-polarize the neuron. During the process of 

repolarization, the cell rebalances it’s Na+ and K+ ions, here the cell is said to be in a 

refractory period where it cannot fire until it is back to its polarized state.4 When the 

action potential reaches the axon terminal, it triggers neurotransmitter release into the 

synaptic space (a small gap 10-100 nm between two communicating neurons) in a 

process called exocytosis5. In the synaptic space, neurotransmitters act on specific 

receptors located on the post-synaptic terminal (dendrites) of the receiving neuron to 

propagate neuronal information. The neurotransmitters that remain in the synaptic 

space are metabolized or taken back to the presynaptic terminal to be re-packaged into 

vesicles. Examples of neurotransmitters include monoamines such as dopamine (DA), 

serotonin, norepinephrine, and histamine, or amino acids such as glutamate, gamma-

aminobutyric acid (GABA), and glycine.  

1.1.1 Biochemistry of the dopamine neurotransmitter 

 DA plays a crucial role in brain function. As a chemical messenger, DA is 

implicated in movement, learning, memory, cognition, and reward seeking behaviors.2 

Alterations or dysfunctions of the DA system have been linked to neurological diseases 

including attention deficit hyperactivity disorder (ADHD), Schizophrenia, Alzheimer’s 

and Parkinson’s diseases, and addiction.2, 6 

 Most DA neurons are localized in the midbrain. From here their fibers project into 

the forebrain and the striatum (Figure 1.1).2, 7 The DA neurons located in the substantia 

nigra pars compacta (SNc) in the midbrain innervate the dorsal striatum (Caudate 

putamen; CPu) via the nigrostriatal pathway that is involved in learning and voluntary 

motor activity.2, 8, 9 This pathway is known to be susceptible to neuronal death or 
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significant DA impairments during neurodegenerative disease like Parkinson’s.2, 10 The 

mesolimbic dopaminergic pathway involves projections of DA fibers from the ventral 

tegmental area (VTA) in the midbrain into the ventral striatum (nucleus accumbens; 

NAc) and the fibers from the olfactory tubercle into the amygdala, septum, and 

hippocampus.2, 7 The mesolimbic pathway has been implicated in memory, addiction, 

and reward related behaviors.2, 7, 11 The DA neurons in the VTA also innervate the 

cortex forming the mesocortical dopaminergic pathway which is involved in emotion, 

motivation, and cognition.2 These VTA dopaminergic projections are together called the 

mesocorticolimbic system.12, 13 

  

  

 

 

 

 

  

 

  

  

 

 

 

Figure 1.1: The main projections of dopamine (DA) cell bodies as shown 
in sagittal mouse brain slice. Projections have been color coded to 
distinguish the three main pathways. Red shows DA cell body projecting from 
the SNc to the CPu forming the nigrostriatal pathway. Black represents the 
projection from the VTA to the cortex in the mesocortical pathway. Green 
shows the mesolimbic pathway, which involves DA projections from the VTA 
into the NAc. This saggital mouse brain was adapted from Mouse Brain Atlas 
with permission from Elsevier.1, 2 
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 DA is synthesized from L-tyrosine. During synthesis, which occurs in two main 

steps, L-tyrosine undergoes hydroxylation at its C3 carbon to produce L-3,4-

dihydroxyphenylalanine (L-DOPA). This reaction is rate limiting and is catalyzed by 

tyrosine hydroxylase (TH) enzyme in the presence of Fe2+, O2, and tetrahydrobiopterin 

as cofactors. L-DOPA subsequently undergoes decarboxylation in the presence of L-

aromatic amino acid decarboxylase (AADC) enzyme and pyridoxal phosphate cofactor 

to form DA (Figure 1.2). Following synthesis, DA is packaged into vesicles by vesicular 

monoamine transporter 2 (VMAT2), which protects vesicular DA from being metabolized 

by monoamine oxidase (MAO) until it is transported across the presynaptic terminal 

upon electrical stimuli. An action potential arriving at the axon terminal causes the 

vesicles to move to the nerve terminal to fuse with the cell membrane, releasing DA into 

the synaptic space. In the synaptic space, the primary role of DA is to activate specific 

DA post-synaptic receptors (located on the receiving neuron) to propagate the neuronal 

signal. There are two types of DA receptors: the DA D1-like receptors (sub-divided into 

the D1 and D5 receptors) and the DA D2-like receptors (sub-divided into the D2, D3, 

and D4 receptors). When DA D1-like receptors are activated, they increase cyclic 

adenosine monophosphate (cAMP) and neuronal activity through stimulation of adenylyl 

cyclase (AC). However, activation of DA D2-like receptors reduces cAMP levels and 

neuronal activity by inhibition of AC. Termination of the synaptic DA signal is achieved 

by: 1) the DA transporter (DAT) which takes DA back into the presynaptic terminal or, 2) 

DA is enzymatically degraded by MAO and catechol-O-methyl transferase (COMT) into 

its metabolites such as 3,4-dihydroxyphenylacetic acid (DOPAC), 3-methoxytryptamine 

(3-MT), and homovanillic acid (HVA) (Figures 1.3 and 1.4).2, 3, 14 
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Figure 1.2: Biosynthesis of DA. TH catalyzes the conversion of L-Tyrosine to L-
DOPA. The conversion of L-DOPA to DA is catalyzed by AADC. 
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Figure 1.3: Pathway showing DA catabolism. This pathway involves conversion 
of DA by MAO to DOPAC which is subsequently converted to HVA by COMT. DA 
can also be converted into 3-MT in a reaction catalyzed by COMT and further 
broken down to HVA. 
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Figure 1.4: Schematic illustration of synaptic DA transmission. At the 
presynaptic terminal, synthesized DA is housed in vesicles. During 
neurotransmission, the arrival of an action potential at the presynaptic terminal 
triggers exocytotic release of DA into the synaptic cleft where it binds to DA 
receptors at the post-synaptic terminal of the receiving neuron to propagate 
neural information via secondary messengers. Definitions; Gi and Gs: inhibitory 
and stimulatory guanine nucleotide-binding proteins. 
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1.1.2 Brain derived neurotrophic factor (BDNF) 

The DA system works in conjunction with many other neurotransmitters, 

neuromodulators and proteins within the brain. One key player in neuronal functions is a 

27 kDa homodimeric protein, BDNF. BDNF belongs to a class of neurotrophins that 

include nerve growth factor (NGF), neurotrophin-3, (NT-3), and neurotrophin – 4/5 (NT-

4/5).15 BDNF exerts its effect through activation of high affinity tyrosine kinase receptor, 

TrkB (Figure 1.5). In addition, it binds to low affinity p75 receptors to form a complex 

that regulate Trk mediated signaling by influencing the TrK receptor conformation.16-18 

BDNF is synthesized in the cell body of neurons, packaged into vesicles and then 

transported to the nerve terminal for local secretion.16 Following exocytotic release from 

the nerve terminal, BDNF in the extracellular milieu binds to the TrkB receptor causing 

receptor dimerization. This dimerization induces activation of kinases, which catalyze 

phosphorylation of the tyrosine residue of the receptor to provide binding sites for 

signaling proteins such as growth factor receptor-bound protein 2 (GBR2), adaptor 

protein containing SH2 domain (SHC), and son of sevenless (SOS).15, 16 Subsequent 

activation of these signaling proteins via phosphorylation triggers numerous signaling 

cascades identified in three main pathways namely the phosphatidylinositol-3-kinase 

(PI3K), the Ras/mitogen activated protein kinase (MAPK), and phospholipase C, γ 

(PLCγ) pathways.15, 16, 18 Activation of these pathways leads to various cellular events 

that modulate different neuronal functions including cell survival, neurogenesis, synaptic 

plasticity, synaptic transmission, and neurotransmitter release.2, 19-21 Alteration in the 

level and function of BDNF has been implicated in neurological diseases including 

Parkinson’s disease and drug addiction.22-27 
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Figure 1.5: Schematic illustration of the action of brain derived neurotrophic 
factor (BDNF) through TrkB receptors. Activation of TrkB by BDNF triggers 
neuronal cascades that activate cAMP response element binding protein (CREB). 
The neuronal cascades involve phospholipase Cγ (PLCγ), the Ras/mitogen 
activated protein kinase (MAPK), and phosphatidylinositol-3-kinase (PI3K) 
pathways that leads to several functions including neuronal growth, differentiation, 
and synaptic plasticity.  
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1.2 Addictive drugs and the dopamine system 

 Drugs of abuse interfere with normal brain function causing neuroadaptations 

that can lead to drug addiction.28 Drug addiction is a complex brain disorder that 

involves persistent and compulsive intake of drugs regardless of their destructive 

consequences.29, 30 Examples of addictive drugs include amphetamine, nicotine, 

ethanol, cocaine, marijuana, opioids, and solvent inhalants.31, 32 Each of these drugs is 

unique and may exert its effect through different neuronal substrates.29, 33 However, one 

common property of addictive drugs is their action on the mesolimbic DA system, which 

is integral to the brain reward mechanism.29 Addictive drugs activate the mesolimbic DA 

circuitry, which subsequently leads to elevation of extracellular DA levels in the terminal 

region, NAc.11, 29, 34 These drug induced alterations in extracellular DA levels may be 

achieved through diverse mechanisms. For instance, ethanol increases DA neuron 

firing in the VTA through inhibition of N-methyl-D-aspartate (NMDA) receptors or 

activation of GABAA receptors.31, 35 Nicotine, which mediates its actions through 

acetylcholine receptors, and opiates which act through opioid receptors, also indirectly 

increase DA neuron firing in the VTA.31, 35 On the other hand, cocaine increases 

extracellular DA levels by directly acting on the DA transporter (DAT) to inhibit DA re-

uptake, while amphetamine reverses the function of DAT to release DA from the 

terminal region of DA neurons.11, 31 This common induced elevation in extracellular DA 

levels has been linked to the reinforcement effect of most drugs of abuse.11 Meanwhile, 

solvent inhalants including volatile organic solvents like toluene have also been reported 

to influence the mesolimbic DA system; nonetheless, their mode of action is not well 

understood.36-38 Taken together, although drugs of addiction involves several 
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neurotransmitters and affects multiple brain regions, the mesolimbic DA circuitry 

appears to be a common pathway where the actions of drugs of abuse converge.29, 39 

1.3 Toluene abuse 

1.3.1 Toluene as an inhalant 

 Toluene is a widely used industrial solvent produced mainly from petroleum and 

as a byproduct of the coke oven industry.40 It is found in several consumable products 

such as paint, paint thinners, glue, degreasers, and adhesives.41, 42 Aside from its 

conventional uses in these products, toluene is also abused as an inhalant for its 

euphoric effect. This form of drug abuse is administered by directly inhaling vapors from 

the products, inhaling concentrated vapor trapped in a bag or breathing from rags 

soaked in toluene containing products.43, 44 Because solvents like toluene are legal, 

easily accessible, and inexpensive, younger populations are at increased risk for its use 

and abuse as inhalants.41, 45 In the United States, a recent epidemiology report showed 

that, from 2002 to 2011, the number of first time inhalant users ranged between 719,000 

to 877,000; while in 2012, a total of 584,000 people age 12 or older used inhalants for 

the first time, of which 62.5% were under the age of 18.46  

 Solvents like toluene are known to cause diminished mental and physical 

capabilities such as ataxia, dis-inhibition, dizziness, incoordination, lethargy, slowed 

reflexes, slowed thinking and movement, slurred speech, and memory loss.47-51 There 

are also substantial reports that have shown that chronic inhalant use damages the 

liver, kidneys, and optic nerves, and leads to coma and death by respiratory 

depression.41, 43, 52-54 Inhalant use by pregnant mothers can also cause complications 

during pregnancy and child birth.55 
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1.3.2 Behavioral and pharmacological effects of toluene 

 Toluene has similar neurobehavioral effects as other CNS depressants including  

alcohol.37, 56 For example, toluene has reinforcing/rewarding effects. This consequence 

is evident in existing work that showed that mice will self-administer toluene 

intravenously.57 In earlier work that was done by Weiss et al., it was also demonstrated 

that monkeys would work to gain brief access to toluene vapor just as they would for 

amphetamine or opiates.58 Furthermore, condition placed preference model has shown 

that rats and mice will spend more time in a chamber where they were previously paired 

with toluene than in one without toluene.59-61 In addition to having reinforcing properties, 

tolerance to toluene inhalation has also been identified in animal models.62-65 In early 

work reported by Himnan, toluene induced tolerance developed to locomotor behavior 

including ataxia and inhibition of rearing to repeated toluene exposure as measured in 

an open field.64 In another study, monkeys, whose cognition functions were examined 

using delayed matching-to-sample behavior following repeated exposure to toluene, 

were noted to have developed tolerance to their response times for sample selection.65 

Other toluene induced neurobehavioral effects that have been reported include 

spontaneous motor activation, behavior sensitization, toluene dependence, 

discriminative stimulus effects, disruption in operant behavior, anticonvulsant effects, 

and synergistic effects with other drugs of abuse.37, 56, 66-76 These data together with 

many more provide useful evidence that toluene abuse produces behavioral effects that 

are similar to many other drugs of abuse.37, 56  

 

 

http://europepmc.org/abstract/MED/3929433/?whatizit_url_go_term=http://www.ebi.ac.uk/ego/GTerm?id=GO:0007610
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1.3.3 Neurochemical evidence of toluene’s neural action 

 Though the exact mechanism underlining toluene’s neural action is not well  

understood, existing reports have implicated a number of neurotransmitters in toluene’s 

action. These neurotransmitters include GABA, glutamate, serotonin, glycine, and DA.36, 

37, 62, 77 For example, high-resolution magnetic resonance spectroscopy data showed 

that acute binge inhalation of 8000 or 12,000 ppm toluene reduced levels of GABA 

(12%) and glutamate (8%) in the hippocampus, as well as the index of glutamatergic 

tone (22%) in the dorsal anterior striatum of rat brains.78 Cruz and co-workers used 

recombinant receptors expressed in Xenopus oocytes to examine the influence of 

toluene on NMDA receptors and found that a toluene dose of up to ~ 9 nM inhibited 

NMDA-mediated current in a rapid, reversible, and a dose dependent manner.79 In 

addition, the extent of effect varied from one receptor sub-unit to another with the 

highest in NR1/2B (IC50 = 0.17 mM) followed by NR1/2A (IC50 = 1.4 mM) and then 

NR1/2C (IC50 = 2.1 mM).79 These results are consistent with the data obtained from a 

more recent study where acute treatment of primary cultures of rat hippocampal 

neurons with 0.1-10 nM toluene solutions inhibited NMDA-mediated currents (IC50 = 1.5 

mM), while no effect on response induced by the non-NMDA-agonist kainic acid.80 

Meanwhile, four day treatments of the neurons to 1 mM toluene increased the whole 

cell response to exogenously applied NMDA, and reduced the GABA mediated 

response, but did not alter responses generated by kainic acid.80 Chronic toluene 

treatment was increased the amplitude of synaptic NMDA currents but decreased 

GABA mediated current.80 Furthermore, toluene potentiates the function of α1 glycine 

receptor subtypes in oocytes and mouse serotonin-3 receptor function, but inhibits 



www.manaraa.com

14 
 

 
 

nicotinic acetylcholine receptors (nAChRs) in rodents.77, 81, 82 There is also substantial 

evidence about toluene’s influence on the DA system, particularly on the mesolimbic 

dopaminergic pathway. Riegel and his team showed that perfusion of toluene directly 

into the VTA of a rat’s brain increased DA concentrations in both the VTA and the 

NAc.36 Gerasimov et al. also demonstrated that acute inhalation of 3000 ppm toluene 

increased extracellular DA levels in the prefrontal cortex of freely moving rats.71 

Furthermore, acute exposure of rats to 11,500 ppm toluene potentiated transient 

neuronal firing in the VTA DA neurons while another study reporting that seven daily 

intraperitoneal injections of 600 mg/kg toluene elevated DA levels in the CPu and 

NAc.83, 84 

 Taken together, these data provide significant evidence that the abused solvent 

toluene alters brain chemistry through multiple mediators that have also been implicated 

in neuronal alterations induced by other drugs of abuse.85-89  

1.4 Tools to evaluate neurochemical function 

1.4.1 In vivo microdialysis 

 Microdialysis is an in vivo sampling technique that allows small molecules such 

as neurotransmitters and neuropeptide to be sampled from freely moving animals and 

analyzed using analytical tools. Microdialysis sampling is based on the principle of 

diffusion and size exclusion where small molecules migrate along a concentration 

gradient in to a probe and are collected and analyzed.90 The microdialysis probe plays a 

central role in the sampling process. The probe consists of a semi-permeable 

membrane with specific molecular weight cut-off allowing only molecules within certain 

molecular weight range to be sampled (Figure 1.6). This feature of the probe provides a 
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means of selectivity for the sampling process. There are different probe designs, each 

of which is unique for sampling from a specific organ. For example, the concentric probe 

is rigid and is suitable for use in brain sampling.91 Other types of microdialysis probes 

are linear, shunt, and flexible probes.91  

 Microdialysis has been widely used in animal research (usually rodents) to probe 

extracellular levels of neurotransmitters and their metabolites and how pharmacological 

agents influence them. When sampling from the brain, the microdialysis probe is 

inserted through a guide cannula, which is implanted in a brain region of interest during 

stereotaxic surgery. Samples from the extracellular matrix are collected by slowly and 

continuously perfusing artificial cerebrospinal fluid (aCSF) through the inlet of the probe. 

Perfusion of the buffer, which is similar in composition to the brain fluid but typically 

lacks the neurotransmitter(s) of interest, creates a concentration gradient that causes 

molecules to diffuse through the semi-permeable membrane of the probe. The 

neurotransmitters are collected from the outlet of the probe as dialysate samples 

(Figure 1.6). The flow rate of the perfusing buffer depends on factors such as desired 

sample volume, sample collection time, and the needed analytical sensitivity.90 The 

semi-permeable membrane of the probe excludes large molecules like proteins from the 

dialysate samples. The samples collected can be analyzed with a variety of analytical 

techniques.  
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Figure 1.6: Microdialysis sampling through a semi-permeable membrane. 
Microdialysis probe consist of a semi-permeable membrane that allows selective 
sampling of small molecules. Shown here is a schematic of a concentric probe 
used for microdialysis sampling from the brain. It consists of inner and outer 
tubing. During sampling, dialysate buffer (perfusate) is pumped through the inner 
tubing to create concentration gradient between the brain tissue and the probe. 
Molecules diffuse along their concentration gradient and only small ones pass 
through the membrane into the outer tubing and are swept into a collection vial as 
dialysate samples. 



www.manaraa.com

17 
 

 
 

1.4.1.1 Separation and detection of dialysate samples 

 Microdialysis samples are commonly analyzed using a separation technique with 

a detection method. The separation techniques used in microdialysis measurements 

include high performance liquid chromatography (HPLC) and capillary electrophoreses 

(CE).92-95 Coupling microdialysis to these techniques allows the constituents of the 

dialysate samples to be separated and subsequently detected with a vast array of 

detection systems including mass spectrometers, fluorescence, and electrochemical 

detectors.92, 94, 96 This combination allows microdialysis to be used to analyze multiple 

analytes simultaneously. HPLC has been widely used as a separation tool in 

microdialysis measurements because it is commercially available and does not involve 

complex instrumentation, making it easy to use. Although CE has higher mass 

sensitivity and better temporal resolution (in seconds) compared to HPLC (in minutes), 

advances have been made in miniaturizing HPLC columns (4 – 5 mm internal diameter) 

into microbore columns (0.3 – 1.0 mm internal diameter), which have led to 

improvements in temporal resolution and mass sensitivity of HPLC measurements.92, 96-

98 HPLC with electrochemical detection has been widely used to analyze monoamine 

neurotransmitters such serotonin and DA as well as their metabolites DOPAC, HVA, 3-

MT, and 5-hydroxyindoleacetic acid (5-HIAA). In electrochemical detection, the analyte 

must be electroactive; therefore any other non-electroactive species are undetected. 

Since, electroactive species are oxidized and reduced at unique potentials, 

electrochemical detection provides high selectivity and is also known for its good 

sensitivity.99 Examples of electrochemical detectors are amperometric detectors where 

approximately 10% of the analyte are oxidized or reduced, and coulometric detectors, 
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which have a flow through cell design making it possible for nearly a 100% of the 

analyte to be oxidized.100 Since most amino acid neurotransmitters are not 

electroactive, they require pre-column derivatization to make them electroactive.91, 99 

Amino acid neurotransmitters have also been analyzed using HPLC with fluorescence 

detection and mass spectrometry. Mass spectrometry provides high selectivity and 

conclusive identification of analyte using their molecular masses.91 Also, mass 

spectrometry allows analysis of small sample volumes containing low concentrations of 

analyte.96 However, microdialysis samples are of high ionic strength that can cause 

clogging of the ionization source of the mass spectrometer creating high background 

noise and requires additional desalting procedures prior to analysis.91 

  Analysis of microdialysis samples can be done using an online or offline 

arrangement of the separation and detection set-ups. In an online set-up, microdialysis 

samples are directly transferred to a separation system that analyzes the samples as 

they are collected. This arrangement eliminates the problem of sample degradation and 

minimizes contamination due to sample handling.90, 96 In the offline arrangement, 

samples are collected for later analysis. This procedure is susceptible to contamination 

due to handling and sample degradation. However, the offline arrangement has been 

used widely because most laboratories cannot afford the expensive instrumentation and 

expertise that go with the online analysis.96 

1.4.1.2 Advantages and disadvantages of in vivo microdialysis 

 One advantage of microdialysis is its ability to measure basal extracellular levels 

of neurotransmitters and metabolites. In addition, the technique allows simultaneous 

analyses of multiple analytes. The main drawback of microdialysis is low spatial 
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resolution due to the relatively large size of the microdialysis probe (2 mm long, 240 µm 

diameter) compared to distinct brain regions, which can be < 0.5 mm3.96 Compared to 

the fast neuronal events (on a milliseconds time scale), microdialysis has poor temporal 

resolution. Thus, microdialysis is a less suitable choice for measurements of 

neurotransmitter release and uptake dynamics.  

1.4.2 Fast scan cyclic voltammetry (FSCV) 

 FSCV belongs to a family of electroanalytical techniques that measures current 

generated by electroactive species in response to an applied potential at the surface of 

a working electrode. In FSCV, the applied potential is triangular in shape with 

parameters sufficient for the test chemical to undergo a redox reaction. Typically, the 

working electrode is held at a negative potential, ramped up to a positive potential, and 

then brought back down to the starting negative potential. These potentials are scanned 

with respect to a silver-silver chloride (Ag/AgCl) reference electrode (Figure 1.7). Unlike 

classic cyclic voltammetry, the waveform in FSCV is scanned at a faster rate (> 100 V/s) 

to improve sensitivity.101, 102 The waveform takes approximately 10 ms to complete a 

cycle and is repeated several times (usually at 10 Hz) at 100 ms intervals. In the 

forward scan of the applied potential, electrons are transferred from the analyte to the 

electrode (oxidation) whereas the reverse scan causes electrons to move from the 

electrode to the analyte (reduction, Figure 1.7). The flow of electrical charge is 

measured as current, which is proportional to the concentration of the test chemical 

according to Faraday’s law of electrolysis (Equation 1). 

                                          Q = nFN                                            (1)    
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In this equation, Q is the total electric charge measured in Coulombs, n is the number of 

moles of electrons per molecule lost or gained, F is Faraday’s constant, given as 9.649 

x 104 Coulombs/mole, and N is the number of moles of analyte undergoing electrolysis. 

Where current (I) is given as a change in charge (Q) with respect to time (Equation 2).                                        

                                           I = dQ / dt                                          (2) 

In addition to the faradaic current, a large charging current is produced due to the fast 

scan rate and therefore the small change in current caused by the electrolysis of the 

analyte is obtained by background subtracting the charging current. This attribute 

makes FSCV useful in measuring only changes in current and not the absolute 

current.101, 103 Nonetheless, its temporal resolution in milliseconds has made it a 

powerful tool to monitor the fast chemical events of several neurotransmitters in the 

brain.  

 The working electrode used in FSCV serves as a key component in the 

measurement. In brain measurements where FSCV is coupled to a microelectrode, high 

spatial resolution is achieved because the microelectrode, which is typically 7 µm in 

diameter and 50 – 200 µm in length allows measurements from discrete brain regions 

with minimal tissue damage.104-106 The commonly used microelectrode consists of a 

carbon fiber encased in a glass capillary. Carbon fiber microelectrodes offer several 

advantages which include the fact that fabrication is easy and cheap, they are less 

susceptible to fouling when implanted in brain tissue, and permit the use of large 

potential windows.101  

 The data obtained from FSCV in brain measurements is in three different forms.  

One form is a plot of the Faradaic current as a function of the applied potential referred  
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to as cyclic voltammogram (Figure 1.8A). The cyclic voltammogram provides a unique 

‘fingerprint’ of the analyte that is used for identification. Cyclic voltammograms are 

unique for a given electroactive species in terms of shape and oxidation and reduction 

potentials, providing selectivity for the FSCV technique. For molecules whose cyclic 

voltammograms may look identical, their identities can be further confirmed using 

pharmacological verification.107, 108 The FSCV data can also be visualized in a 3-

dimensional color plot of current (z-axis), time (x-axis) and applied potential (y-axis), 

where the oxidation and reduction currents are color coded respectively (Figure 1.8B). 

Finally, FSCV data can be represented as a current versus time trace, where the rising 

phase of the plot primarily represents release and the decay phase is the uptake of the 

neurotransmitter (Figure 1.8C). 

 With the above mentioned superiority over other available techniques, FSCV has 

been used extensively both in vivo (in free moving or anesthetized animals) and in brain 

slices to study the dynamics of many neurotransmitters including DA, serotonin, 

norepinephrine, epinephrine, histamine, adenosine, tyramine, and octopamine.106, 109-114 

1.4.2.1 Slice fast scan cyclic voltammetry  

 A complete description of slice FSCV with instructional video can be found in:  

Maina, F. K,* Khalid, M.,*Apawu, A. K,* and Mathews, T. A. (2012) J. Vis. Exp, 59, pii: 

3464. doi: 10.3791/3464.106 *Co-first-authors. 

 Slice FSCV is a useful tool to characterize the release and uptake profiles of 

many neurotransmitters including DA dynamics in rodent models. In this method, the 

test animal is euthanized and its brain is removed and sliced into coronal brain slices, 

which are equilibrated in continuously oxygenated aCSF buffer. Voltammetric 
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recordings are made from a coronal brain slice placed in a temperature controlled 

chamber that is continuously perfused with oxygenated aCSF buffer. During 

measurement, neurotransmitter release is evoked with a single (monophasic, 350 μA, 

60 Hz, and 4 ms pulse width) or multiple electrical pulses delivered onto the brain slice 

through a bipolar stimulating electrode and the neurotransmitter release is measured at 

a working electrode, usually a carbon fiber microelectrode surface (Figure 1.7) as 

described above and also in Maina et al.106 

 Slice FSCV has numerous advantages, which include the ability to make 

measurements from different brain regions of the same coronal slice. Furthermore, in 

this method, probe placement is easier since no stereotaxic coordinates are needed. A 

working microelectrode and bipolar stimulating electrode are positioned on the brain 

slice by viewing through a microscope. The brain region of interest is located with the 

help of a rodent brain atlas and anatomical markings on the brain slice. With these aids, 

measurements can be made from sub-anatomical brain regions that are very close to 

each other. Slice FSCV allows test of pharmacological agents on neurotransmitter 

dynamics like in vivo measurements. Since multiple coronal brain slices (typically 400 

µm) can be obtained from the same brain region, it is possible to do multiple 

pharmacological tests in a single animal using slice FSCV. Reproducibility of the 

pharmacological tests is also high since it is done in a system that is controlled by the 

experimenter. In addition, this method provides selectivity in probing autoreceptor 

functionality since measurements can be made from the presynaptic terminals without 

direct inputs from post-synaptic receptors.   
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Figure 1.7: Slice fast scan cyclic voltammetric (FSCV) measurement of DA 
dynamics. In slice FSCV of DA, coronal brain slice (top panel) is electrically 
stimulated to evoke DA. The applied waveform at the microelectrode surface is 
scanned from -0.4 V to +1.2 V and back to -0.4 V. DA oxidized to form dopamine-o-
quinone in the forward scan and in the reverse, dopamine-o-quinone is reduced 
back to DA. The redox reaction generates current measured and converted to 
concentration. The coronal brain slice was adapted from Mouse Brain Atlas with 
permission from Elsevier 1. 
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Figure 1.8: Representative FSCV data. Data obtained from FSCV experiments are 
expressed in three different plots A) A cyclic voltammogram (CV) provides 
information about the oxidation and reduction potentials of DA (~ 0.6 V and - 0.2 V 
respectively). These characteristic potentials together with the shape of the 
voltammogram can be used to identify DA. B) A 3-D color plot showing concentration 
(z-axis) versus applied potentials (y-axis) versus time (x-axis), where green and blue 
colors represent oxidation and reduction currents respectively. C) A plot of oxidation 
current versus time gives a concentration-time trace where the red arrow shows the 
point of electrical stimulation to evoke DA during measurement. The ascending 
phase of the concentration-time trace primarily denotes DA release whereas the 
descending phase shows DA uptake. 
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1.4.2.2 Advances in fast scan cyclic voltammetry  

 Overwhelming progress has been made in the use of FSCV in brain 

measurements. These advances span different aspects of FSCV including electrode 

fabrication, waveform modification, miniaturization of instrumentation, and clinical use. 

For example, the sensitivity of FSCV measurements has been improved significantly 

through modification of the carbon fiber microelectrode surface.115, 116 Recent work by 

Hashemi and colleagues showed that electrodeposition of a cation exchange polymer 

called Nafion on a carbon fiber microelectrode surface increased the sensitivity of in 

vivo FSCV detection of serotonin in rats, which was hampered by fouling of the 

microelectrode surface by extracellular metabolites including 5-HIAA.115 In a related 

study, coating the surface of a carbon microelectrode with a carbon nanotube (CNT)-

Nafion mixture also significantly enhanced the sensitivity (~ 4 fold increase) of FSCV 

detection of adenosine in rat brain slices without altering temporal resolution.116 Other 

electrode modifications include microelectrode arrays, which not only allow 

simultaneous FSCV measurements from multiple electrodes but also measurement of 

multiple molecules.117, 118 Another addition to the field was the development of 

microelectrode that can be chronically implanted into the brain to make measurements 

over a long period of time. 104 This chronically implanted microelectrode, which was first 

reported by Clark et al., is useful in tracking neurotransmitter changes in behaving 

animals over time and can help to study the progression of neurological disorders 

including addiction.104 The chronically implanted electrode consists of a carbon fiber 

encased in a fused silica with the fiber and silica interface insulated with two-component 

epoxy and the protruding fiber (7 µm in diameter and 150 – 200 µm in length) treated 
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with 2-propanol.104 This microelectrode is biocompatible and can be used to monitor 

sub-second DA dynamics in rodents over 4 months with no significant tissue 

damage.104, 119-121 In addition to microelectrode modifications, optimizing the wave form 

of the applied potential and the scan rate have also improved sensitivity of FSCV 

measurements.102 These modifications have contributed to the use of FSCV to 

effectively measure a wide variety of electroactive species in the brain.5, 102, 108, 115   

 FSCV measurements have also been improved in the area of instrumentation. 

Currently, a wireless instantaneous neurotransmitter concentration sensing system 

(WINCS) has been developed that allows FSCV measurements to be made from 

behaving animals in an environment without restrictions from cables while transmitting 

neurochemical data remotely to an analysis system.122-124 This technology reduces 

electrical noise interference and movement artifacts in the measurements.122 The 

WINCS coupled to FSCV has been used to detect DA, histamine, adenosine, and 

serotonin in animal models and is now being fine-tuned to be used in humans to monitor 

neurochemicals in deep brain stimulation feedback.111, 122-125 

1.4.3 Brain tissue content analysis of neurotransmitters 

 Brain tissue content analysis provides a means to assess intracellular levels of 

neurotransmitters and their metabolites in animal brain tissues. The method has been 

widely used to examine the intracellular levels and catabolism of most monoamines 

including DA in rodent models.84, 94, 126, 127 It involves sacrificing animals (usually by 

cervical dislocation followed by decapitation) and then their brains are removed and 

dissected to obtain tissue from the region on interest. The use of cervical dislocation is 

preferred to other methods of euthanasia such as anesthesia or carbon dioxide 
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inhalation because it eliminates potential interference in the brain chemistry, since 

stress as a result of injection of an anesthetic or suffocation may alter the levels of brain 

chemicals.128, 129 Brain tissues are frozen immediately after they are removed to ensure 

that the neurochemicals do not degrade. Prior to analysis, the tissues are homogenized 

in a strong acid (perchloric acid is commonly used) to extract neurochemicals from the 

tissue and then the samples are centrifuged. The supernatant is analyzed using a 

separation techniques coupled to a detector. HPLC with electrochemical detection has 

been widely used to analyze tissue samples.84, 94, 126, 127 First, standards of the 

compound of interest are run individually to obtain their retention time to enable 

identification of analyte peaks. The samples are then run at appropriate attenuation. 

The analyte peaks obtained are integrated against calibration curves of their respective 

standards to obtain their concentration in the tissue samples. Since tissue content 

analysis uses free hand dissection, different sizes of tissues are taken from the regions 

of interest, it is important to normalize the analyte concentrations to the tissue weight or 

its protein content. Normalizing the analyte concentration to protein content of the tissue 

is advantageous as it minimizes problems associated with weighing wet tissue samples 

including loss of tissue and degrading neurochemicals if there is too much time delay. 

 Although tissue content analysis using HPLC does not have good temporal 

resolution as compared to a technique like FSCV, it has been useful to understand how 

intracellular neurotransmitter levels and metabolism are influenced by drugs of abuse, 

neurological disorders, and gene modification.84, 94, 130, 131 Tissue content analysis has 

also be used to investigate the biosynthesis of DA, in which case the activity of TH (the 

rate limiting enzyme in biosynthesis of DA) is indirectly examined by inhibiting AADC 
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(the enzyme that catalyzes the decarboxylation of L-DOPA) and then measuring the 

accumulation of L-DOPA in tissue samples.94, 127 

1.4.4 Behavioral testing in animal models 

 Behavioral assays used in animal models have provided useful clues to the 

neural mechanism underlining the action of most drugs of abuse. They have also been 

used to measure observable traits of genetically modified animals that are used as 

models for most neurological disorders.132-135 The assays encompass simple locomotor 

activity measurements to more sophisticated behavioral paradigms such as condition 

placed preference and operant behavior.59, 61, 68, 104, 136, 137 Locomotor activity has been 

widely used to characterize the neurobehavioral profile of most drugs of abuse. Such 

characterization is based on existing data that have linked induced locomotion to 

changes in the mesolimbic dopaminergic system. For example, direct injection of DA 

into the NAc stimulates rat’s locomotor activity, while destroying DA neurons in the NAc 

with 6-hydroxydopamine decreases drug induced stimulated locomotor activity.138-140 

Thus, stimulation of locomotor activity is thought to correspond to increased 

extracellular DA levels in the NAc.34, 141 

 Locomotor activity testing involves putting an animal in an activity chamber or 

placing a whole cage of a singly housed animal into an activity set-up, depending on the 

goal of the experiment. The activity chamber or set-up is equipped with three sets of 

infrared (IR) emitter-detector arrays attached outside of the set-up, two of which are 

positioned in the x- and y-axis to measure the position and horizontal movement of the 

animal while the third pair is placed in the z-axis to measure the jumping and rearing 

activities of the animal. During data collection, the position and locomotor activity of the 
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animal is detected by interruption in the light beams emanating from the IR emitter to 

the detector. This interruption in the IR beam generates an analog signal that is 

recorded by automated activity software installed on a computer. The data obtained 

from this type of measurement include total distance traveled during the experiment, 

horizontal count, horizontal time, vertical count, vertical time, stereotypic count 

(repetitive movements) and stereotypic time. In testing the effect of pharmacological 

agent on locomotor behavior, the animals may be pre-treated or treated during 

measurement depending on the mode of the drug administration. For volatile solvents 

including toluene, a calculated amount of the solvent is introduced and volatilized in the 

activity chamber, which is made airtight (static system) or the vapor is continuously 

generated in a dynamic system. Locomotor activity is measured during the treatment.  

1.5 Research objectives  

 Because dopaminergic innervations in the striatal region of the brain are involved 

in several neuronal functions and have been implicated in many neuronal disorders 

including drug addiction, understanding the DA dynamics in this terminal region is a 

crucial component of the attempt to decipher the mechanism underlining neuronal 

disorders. 

 The overarching objective of my research work is two-fold: 1) To understand how 

the striatal DA system adapts to acute and chronic toluene inhalation, and 2) To 

understand how a trophic factor, brain derived neurotrophic factor (BDNF) modulates 

striatal DA release and uptake. 

1.5.1 Research objective 1: To understand how the striatal DA system adapts to acute 

and chronic toluene inhalation: This project is a collaborative work with Dr. Scott Bowen 
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from the Department of Psychology, Wayne State University. Part of this work is in 

revision for publication in Psychopharmacology. 

 Drug addiction involves substances such as amphetamine, cocaine, 

methamphetamine, and alcohol. However, one area that has received little attention is 

inhalant abuse, which is defined as the deliberate inhalation of volatile organic solvents 

in order to attain a euphoric feeling.45 One of the most widely abused inhalants among 

the adolescent population is toluene.142 The abused inhalant toluene has potent 

behavioral and neurochemical effects. Available evidence suggests that toluene 

inhalation alters DA neurotransmission in the brain.36, 71 However, the exact mechanism 

underling toluene’s effect on the DA system, particularly DA release and uptake 

dynamics, has remained elusive. The present study seeks to elucidate toluene’s action 

on the striatal DA system by using behavioral testing and neurochemical measurements 

including techniques such as in vivo microdialysis, slice FSCV, and tissue content 

analysis.  

 The overall hypothesis of this work was that both acute and repeated toluene 

inhalation will alter DA release and uptake dynamics in the mesolimbic DA terminals. 

This hypothesis is based on existing behavioral data that has shown that toluene 

inhalation has a rewarding effect and can stimulate locomotor activity in rodent 

models.58, 68, 74 Our hypothesis is also supported by neurochemical data that has shown 

that acute toluene inhalation can potentiate extracellular DA levels in the pre-frontal 

cortex and the NAc.36, 71, 143 

1.5.2 Research objective 2: To understand how a trophic factor; brain derived 

neurotrophic factor (BDNF), modulate striatal DA release and uptake. Portions of this 
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work have been published in the manuscript by Aaron K. Apawu, Francis K. Maina, 

James Taylor, and Tiffany A. Mathews in ACS Chem Neurosci., 2013, 4(5): 895 – 905. 

Copyright © 2013, American Chemical Society. 

 BDNF regulates growth, differentiation, and survival of neurons through 

activation of high affinity tyrosine kinase receptor, TrkB.144-147. There is also 

considerable evidence that suggests that BDNF modulates striatal DA function.21, 148-150 

From previous work in the Mathews laboratory, it was proposed that the reduction in 

BDNF expression is directly responsible for decrease in evoked-DA release, while the 

compensatory response to lifelong reductions in BDNF would lead to decreased DA 

transporter function.94 Based on this work, we have hypothesized that BDNF modulates 

presynaptic DA dynamics in the striatum through activation of the TrkB receptor. 

Typically, molecular techniques have been used to probe the effect of TrkB receptor 

activation and the potential pathways through which BDNF may influence DA 

dynamics.148, 149 However, the exact mechanism by which BDNF regulates presynaptic 

DA release and uptake processes remains elusive. The goal of the present work is to 

examine the ability of FSCV to measure the action of tyrosine kinase receptors on 

striatal DA dynamics and then characterize the involvement of presynaptic TrkB 

receptors in regulating striatal DA release and uptake processes. FSCV provides the 

unique ability to measure both DA release and uptake rate on a milliseconds time scale 

consistent with release and uptake events. The use of a carbon fiber microelectrode of 

~ 7 microns in diameter ensures high spatial resolution with negligible tissue damage. 
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CHAPTER 2 

Materials and Methods 

 The chapter expounds on the materials and methods used in all experiments 

reported in this dissertation. The methods discussed here include behavioral assays 

and neurochemical techniques used to understand brain function. Specific details of 

each technique are discussed in subsequent chapters. All experimental protocols and 

animal procedures used in this dissertation were approved by the Institutional Animal 

Care and Use Committee (IACUC) of Wayne State University.  

2.1 Chemicals 

 Toluene (purity > 99.5%) was purchased from Fisher Scientific Co. (Fairlawn, 

NJ). Chemicals used to prepare artificial cerebrospinal fluid (aCSF) for voltammetry and 

in vivo microdialysis, and mobile phase for HPLC analysis were purchased from Fisher 

Scientific Co. (Fairlawn, NJ) and Sigma (St. Louis, MO). Pharmacological agents used 

in this work were purchased from specific vendors as follows: BDNF from PeproTech 

(Rocky Hill, NJ), 7,8-dihydroxyflavone, genistein, and tyrphostin 23 were from Tokyo 

Chemical Industry Co. Ltd. (Portland, OR) or EMD Chemicals, Inc. (Gibbstown, NJ), and 

K252a was from LC Laboratories (A Division of PKC Pharmaceuticals Inc., Woburn, 

MA). 

2.2 Animal subjects 

 Adolescent outbred male Swiss-Webster mice (~ 4 week old) were used in the 

inhalant (toluene) abuse project. The choice of mouse strain was based on previous 

work that has demonstrated that Swiss-Webster mice have higher toluene induced 

locomotor activity than other mouse strains.74 Swiss-Webster mice were purchased 
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from Harlan Breeding Laboratories (Haslett, MI) and housed in a vivarium at Wayne 

State University, which is certified by the Association for Assessment and Accreditation 

of Laboratory Animal Care (AAALAC). Mice were kept in groups of 10 - 12 animals per 

cage and had ad libitum access to Rodent Lab Diet 5001 (PMI, Nutrition International, 

Inc., Brentwood, MO), and water. The environment of the vivarium was temperature 

controlled (20 – 22 oC) with a 12-h light cycle (0600 – 1800 h). 

 The second project involved the use of genetically modified C57BL/6 mice, 

where mice had no mutation (wildtype), or one copy of the mutated brain-derived 

neurotrophic factor gene (heterozygote BDNF mice; BDNF+/-). BDNF+/- and their 

wildtype littermates were purchased from Jackson Laboratories (Bar Harbor, ME) and 

breeding pairs were established. All neurochemical experiments were performed on 

offspring that were born and raised in-house. When mice were approximately 3 weeks 

of age, they were separated from their parents, ear-punched (for identification 

purposes), and less than 2 cm of their tail was taken to determine their genotype by 

using polymerase chain reaction (PCR) analysis of tail DNA. (For detailed procedure, 

see Bosse et al., 2012).94 

2.3 Toluene exposure procedure 

 Toluene exposure was performed in static exposure chambers consisting of 26.5 

liter cylindrical glass jars (diameter 28.5 cm; height 45 cm; total floor space = 638 cm2) 

housed within a fume hood (Figure 2.1). Each chamber was equipped with a vapor 

diffuser with a fan attached to a PlexiglasTM lid. On the day of exposure, a mouse was 

placed in the floor of a chamber approximately 50 cm from the vapor diffuser and 

allowed a 5 minute acclimation period; after which, a known concentration of toluene 
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(calculated using the ideal gas equation, simplified for room temperature151) was 

injected through an injection port onto filter paper in the vapor diffuser. The fan was then 

turned on to diffuse toluene within the chamber for a period of 30 minutes; after which 

the fan was turned off and the chamber was opened to allow the mouse a 30 minute 

period of no toluene vapor inhalation (recovery). For the air-control experiments, the 

same procedure was followed, but no toluene was injected into the chamber. Routinely, 

the concentration of toluene vapor in the chamber was confirmed and monitored using a 

single wavelength-monitoring infrared spectrometer (Miran 1A, Foxboro Analytical) to 

ensure that there were no leaks in the chamber. Mean concentrations of toluene were 

within 2% of nominal, approximately 2.5 minutes after toluene was injected into the 

exposure chamber it was within 2% of the desired concentrations throughout the 30-

minute exposure period followed by rapid clearance when chamber was opened (Figure 

2.2).  
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Figure 2.1: Schematic diagram of toluene exposure chamber.  
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Figure 2.2: Representative infrared spectrograph of toluene vapor in toluene 
exposure chamber. Data was obtained during routine check for leaks in the 
chamber. Each block represents ~ 50 seconds. Following injection of a calculated 
volume of liquid toluene, the vapor diffused quickly to reach 4000 ppm 
concentration and remained within 2% of the desired concentrations throughout 
the exposure period. When the lid of the chamber was removed, toluene cleared 
quickly from the chamber. Infrared spectrograph was provided by Sean Callan 
from the Bowen lab. 
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2.4 Locomotor activity measurement 

 The toluene exposure set-up consisted of three pairs of 16-beam infrared (IR) 

emitter-detector arrays (Med Associates, St. Albans, VT) located outside of the 

chamber. Two of these (IR) emitter-detector arrays were positioned ~ 2.5 cm from the 

floor of the chamber at a right angle to each other in the x- and y-axes allowing the 

position and locomotion of the mouse to be detected and measured by the count of 

interruptions in the IR beams in the horizontal and vertical planes. The third pair of IR 

emitter-detector arrays were in the z-plane located ~ 7 cm from the floor of the chamber 

recorded jumps and rearing activities of the mouse. The interruptions in the IR beams 

generated analog signals recorded by automated activity software (Open Field Activity 

Software [SOF-811], Med Associates, St. Albans, VT) as locomotor activity. In this work, 

locomotor activity was defined as the sum of interruptions of the lower IR beams in the 

x- and y-axes. 

2.5 Slice fast scan cyclic voltammetry (FSCV) 

 Slice FSCV was used to measure electrically evoked DA release and uptake 

dynamics in the striatum of mouse brain slices.  

2.5.1 Brain slice preparation 

 Following asphyxiation, mice were decapitated and their brains were rapidly 

removed and immediately placed into chilled pre-oxygenated (95% O2/5% CO2) sucrose 

artificial cerebral spinal fluid (aCSF) for 10 minutes. The composition of the sucrose 

aCSF was 180 mM sucrose, 30 mM NaCl, 4.5 mM KCl, 1 mM MgCl2, 26 mM NaHCO3, 

1.2 mM NaH2PO4, and 10 mM D-glucose, and pH = 7.4. The mouse brain was then 

sectioned into 400 µm thick coronal brain slices using a vibratome (Vibratome, St. 
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Louis, MO). Brain slices with the striatal complex consisting of the caudate putamen 

(CPu) and the nucleus accumbens (NAc) were immediately transferred into 

continuously oxygenated fresh aCSF (aCSF for voltammetric recordings consisting of 

0.4 mM ascorbic acid, 126 mM NaCl, 2.5 mM KCl, 1.2 mM MgCl2, 2.4 mM CaCl2, 25 

mM NaHCO3, 1.2 mM NaH2PO4, 11 mM D-glucose, and pH = 7.4) and were allowed to 

acclimate in the buffer for at least 1 hour before voltammetric recordings. 

2.5.2 Electrode fabrication 

 Carbon fiber microelectrodes were made in-house by threading a single strand 

carbon fiber (Goodfellow Oakdale, PA) of diameter 7 μm into a 10 cm long glass 

capillary (dimensions o.d. 1.2 mm, i.d. 0.68 mm; A-M systems, Carlsborg, WA) using 

vacuum suction. The glass capillary was then pulled into two equal halves using an 

electrode puller (Model PE-21 with the following settings: main magnet = 90.7, sub-

magnet = 23.2, and heater = 53.4; Narishige, Tokyo, Japan). There is a heating element 

at the center of the electrode puller, which heats the center of the glass capillary, 

stretching the glass capillary vertically until the magnetic force is the strongest, pulling 

the capillary into two discrete electrodes. The pulled halves of the glass capillary had ~ 

4.4 mm glass taper which was tightly sealed around the glass-carbon fiber interface. 

The carbon fiber protruded centimeters beyond the end of the taper was placed under a 

microscope (Olympus, Tokyo, Japan) and trimmed using a scalpel to the length of 50 - 

200 μm (Figure 2.2). The microelectrodes were stored at room temperature until they 

were required for experimental use. When ready, they were backfilled with 0.15 M 

potassium chloride and a lead wire (Squire Electronics Inc., Cornelius, OR) was 

inserted to establish electrical contact. Silver/silver chloride reference electrodes 



www.manaraa.com

39 
 

 
 

(Ag/AgCl) were fabricated by coating a silver wire (250 µm in diameter; A-M Systems, 

Carlsborg, WA) with silver chloride by anodizing (+1 V) the wire in 1 M hydrochloric acid 

for 5 minutes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3: Stepwise illustration of carbon fiber microelectrode fabrication. 
Electrode fabrication was accomplished in three steps: aspiration of carbon fiber 
into glass capillary, pulling of glass capillary and trimming carbon fiber extending 
from glass capillary to a length of 50 – 200 µm. 
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2.5.3 Microelectrode calibration 

 Following fabrication, the carbon fiber microelectrode was calibrated using flow 

injection analysis to test for its viability and sensitivity. In this procedure, the 

microelectrode was lowered vertically into one of the three ports of a flow T-cell. This 

flow cell had the Ag/AgCl reference electrode sealed in it and one of the remaining two 

ports of the cell was connected to a syringe pump which continuously pumped modified 

aCSF (composition: 2.5 mM KCl, 126 mM NaCl, 1.2 mM NaH2PO4, 2.4 mM CaCl2, 1.2 

mM MgCl2, and 25 mM NaHCO3, and pH = 7.4) at a flow rate of 2 mL/min.  The third 

port was connected to a syringe that would be used to deliver a 3 µM dopamine (DA) 

standard. During electrode calibration, 1 – 2 mL of the DA standard was manually 

injected into the stream of modified aCSF. DA was detected at the microelectrode 

surface when there was a rise in the current being measured. The calibration process 

was repeated at least three times and the average of the maximum current obtained in 

each injection was calculated by dividing the average current by the concentration of the 

DA standard (3 µM). Besides calibrating the microelectrodes before use, a post-

calibration of the microelectrode was performed after data collection from a mouse 

brain. The post calibration factor obtained was used in determining the response factor 

of the electrode for all data analysis. 
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Figure 2.4: Flow injection analysis (FIA) set-up showing calibration of a 
microelectrode. The microelectrode is calibrated using FIA. A) FIA set-up consists 
of a flow T-cell connected to a Ag/AgCl reference electrode, a syringe pump 
continuously supplying aCSF, and a another syringe containing 3 µM DA standard. 
B) Background subtracted cyclic voltammogram of DA standard showing DA 
oxidation and reduction peaks that identifies DA. C) Representative 3-dimensional 
color plot of applied potential versus time versus current showing oxidation and 
reduction current of DA in green and blue colors respectively. D)  Current versus time 
plot showing oxidation current (130 nA) generated from injection of 3 µM DA 
standard. Injection of DA standard is repeated 3 times and the average of the 
maximum current is divided by the concentration of the DA standard. The calibration 
factor in the representative data is 130/3 = 43 nA/µM. 
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2.5.4 FSCV data collection 

 Before voltammetric measurements were made, a recording chamber (Custom 

Scientific, Denver, CO) was continuously perfused with oxygenated aCSF (aCSF for 

voltammetric recordings) using a perfusion pump (Watson Marlow Limited, Falmouth, 

England) set at a flow rate of 1 mL/min. The temperature of the chamber was adjusted 

to 32 oC. The recording chamber where the slice would be placed had a submerged 

Ag/AgCl reference electrode. A brain slice was placed into the slice holder where it was 

submerged in aCSF. With the aid of a microscope, a bipolar tungsten stimulating 

electrode (Plastics One, Roanoke, VA) and the carbon fiber microelectrode were then 

lowered onto the brain surface in the striatum about 100 – 200 µm apart, while the 

microelectrode was placed ~ 75 μm deep into the slice. All three electrodes were 

connected to a head stage potentiostat (Dagan Corporation, Minneapolis, MN) and 

were controlled by TH software (ESA Inc., Chelmsford, MA). To evoke DA release, a 

single pulse electrical stimulation (monophasic, 350 μA, 60 Hz, and 4 ms pulse width) 

generated by a Neurolog® stimulator (Digitmeter, Hertfordshire, England) was delivered 

to the brain slice via the stimulating electrode. Evoked DA release was measured by 

applying a potential to the microelectrode surface in the form of a triangular waveform (- 

0.4 V versus a Ag/AgCl reference electrode, ramped to + 1.2 V and then back to - 0.4 V) 

at a scan rate of 400 V/s. The DA response was measured by the electrode as current. 

A single stimulation was applied to the brain slice every 5 minutes, and DA recordings 

were measured for 15 seconds. When three successive DA release profiles were within 

10% of each other with respect to current, then a stable baseline was considered and 
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these pre-drug measurements were used to determine maximum stimulated DA release 

and uptake.   

2.5.5 FSCV data analysis 

 The DA release profiles were initially determined as current versus time, and by 

using the post calibration factor (a conversion factor), the current was converted into 

concentration. Once the results were in the form of concentration versus time, traces 

were analyzed using LabVIEW™ National Instruments software (Austin, TX), where 

each curve was fitted to a set of Michaelis-Menten based equations using nonlinear 

regression.106, 110, 152-154 Stimulated DA release per electrical pulse ([DA]p) and DA 

uptake kinetics expressed as maximum velocity of the DA transporter (Vmax) were 

obtained by setting Km (which represents the affinity of DA to its transporter) to a fixed 

value of a 160 nM, which allowed us to vary the [DA]p and Vmax. The goodness of fit was 

determined by the coefficient of determination (R2) parameter generated by the software 

(R2 values > 0.8 were used). 

2.6 In vivo microdialysis  

 In vivo microdialysis was used to measure extracellular DA level during toluene 

exposure. The microdialysis procedure involves stereotaxic surgery of a probe followed 

by sample collection and analysis of dialysate samples.  

2.6.1 Stereotaxic surgery 

 Prior to stereotaxic surgery, mice were transported to the laboratory and 

weighed. Each mouse was placed into a chamber connected to isoflurane and oxygen 

until the mouse was anesthetized.  The mouse was removed from the chamber and 

placed onto a heading pad (~ 37 °C) and covered with paper towels to maintain its body 



www.manaraa.com

44 
 

 
 

temperature. Isoflurane was delivered through a nosepiece. Then the pre-operative 

preparation began. A small section of the animal’s fur covering the skull was shaved. To 

protect the eyes from dehydration during the surgical procedure, sterile artificial tear 

lubricant ophthalmic ointment was carefully applied to the eyes. The shaved area above 

the skull was disinfected with betadine and 70% alcohol, and then a small incision was 

made. The exposed skull was cleaned with 10% hydrogen peroxide to dissolve the thin 

membrane covering the skull making Bregma visible. The mouse was placed into a 

mouse stereotaxic frame (David Kopf Instruments, Tujunga, CA) where the anesthesia 

plane was maintained by securing its nose to a tube connected to isoflurane and 

oxygen, where their flow rates were adjusted as needed. The head of the mouse was 

secured firmly on the frame using two non-puncture ear bars and a nose clamp so that 

the top of the mouse’s skull was straight and stable. Bregma on the skull surface was 

located, since coordinates for finding brain regions of interest are referenced using 

Bregma. The coordinates used for the CPu were: anterior-posterior (AP) +0.80 mm, 

lateral (L) -1.3 mm, and ventral (V) -2.5 mm; and NAc: anterior-posterior (AP), +1.2 mm; 

lateral (L), -0.6 mm; ventral (V) -4.2 mm from Bregma, determined from a mouse brain 

atlas and empirically refined.1 The coordinates for the CPu or the NAc were marked and 

an approximately 1 mm diameter burr hole was drilled in the skull for guide cannula 

placement. A second hole was drilled for a skull cap screw that does not require 

coordinates. A CMA/7 guide cannula (CMA microdialysis, Chelmsford, MA) was 

carefully lowered into the first hole. The guide cannula and the screw were firmly held in 

place on the skull by dental cement, which was also used to cover any exposed area of 

the skull. When the dental cement was dry, the mouse was taken from the stereotaxic 
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frame and placed on a heating pad covered with a paper towel in a recovery chamber. 

Following recovery from anesthesia (indicated by independent movement in the 

recovery chamber), the mouse was transferred to a microdialysis bucket furnished with 

bedding, food, and water.  

2.6.2 Simultaneous collection of microdialysis samples and behavioral testing 

during toluene treatment 

 Mice were allowed three days to fully recover from surgery before any behavioral 

testing and dialysate samples were collected. Prior to sample collection, a dummy 

probe in the guide cannula was removed and a microdialysis probe (CMA/7, 2 mm long 

for CPu or 1 mm long for NAc, 240 µm diameter, 6 kDa molecular weight cut-off; CMA 

Microdialysis, Chelmsford, MA) was inserted into the guide cannula. To measure 

locomotor behavior and extracellular DA levels simultaneously, the mouse was placed 

in an experimental chamber (glass tank of dimensions: 41 cm length x 20.3 cm width x 

25.5 cm height) housed in a fume hood. The chamber was modified to allow 

microdialysis sampling lines through a small hole in the lid. The chamber was equipped 

with IR emitter-detector arrays (Med Associates, St. Albans, VT) located outside of the 

chamber permitting locomotor activity of the mouse to be monitored during sample 

collection. ACSF (composition in mM: 147 NaCl, 3.5 KCl, 2 Na2HPO4, 1.0 CaCl2, 1.2 

MgCl2, and pH 7.4) was perfused through the probe overnight at a flow rate of 0.4 

μL/min. The next day at approximately 0900 h, the flow rate of the perfusing aCSF was 

increased to 1.1 μL/min (sampling from CPu) or 0.8 μL/min (sampling from NAc) for an 

equilibration time of 1 hour prior to baseline sample collection. Dialysate samples were 

collected in 15-minute fractions from the freely moving mouse before and during toluene 
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exposure, during recovery from toluene exposure, and post recovery. During the post 

recovery phase of dialysis collection, the regular aCSF was switched to a high K+ 

concentration aCSF buffer (composition in mM: 60 KCl, 89 NaCl, 2.0 Na2HPO4, 1.0 

CaCl2; 1.2 MgCl2; pH 7.4), and perfused through the microdialysis probe for 15 minutes, 

after which it was switched back to regular aCSF.  The infusion of high K+ aCSF directly 

into the striatum stimulates neurotransmitter release and enables evaluation of the 

resulting changes in extracellular DA levels in toluene exposed and air-control mice. 

Meanwhile, locomotor activity was simultaneously monitored by the count of 

interruptions in the IR beams attached to the outside of the chamber generating analog 

signal recorded by automated activity software (Open Field Activity Software). Toluene 

exposure was accomplished using a dynamic exposure system equipped with Praxair 

flow regulators, porter mass flow meters, and a Med PC interface that regulated the 

amount of toluene vapor administered. During toluene exposure, toluene vapor was 

generated by bubbling regulated amounts of air through toluene in a flask. The vapor 

was channeled through tubing, where it was diluted with controlled amounts of air to 

produce the desired concentration of toluene vapor (4000 ppm) that was perfused 

through the experimental chamber for 30 minutes (Figure 2.1). The settings on the 

dynamic system that produced the desired toluene concentration were obtained by 

adjusting the regulators while monitoring and measuring toluene concentration in the 

chamber prior to the experiment using a single wavelength-monitoring IR spectrometer. 

During the recovery phase or air-control experiment, the toluene bubbler was turned off 

to allow only air to perfuse through the chamber.   
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Figure 2.5 Dynamic toluene exposure set-up for simultaneous monitoring of 
locomotor activity and dialysate sample collection. By opening the first valve on 
the air regulator, air was bubbled through toluene in the flask to generate toluene 
vapor that was diluted with air in the tubing regulated by the second valve. The 
amount of toluene perfused into the chamber was controlled by Praxair flow 
regulators, porter mass flow meters, and a Med PC interface. Dialysate samples were 
collected from free moving mouse in the experimental chamber through perfusion of 
aCSF from the syringe through the microdialysis probe to sample small molecules 
such as neurotransmitters from the brain region of interest. Simultaneously, locomotor 
activity was monitored by the count of interruptions in the IR beams attached to the 
chamber that generate analog signal recorded by automated activity software on the 
computer.  
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2.6.3 Sample analysis using high performance liquid chromatography (HPLC)  

 All collected dialysate samples were stored in a -80 oC freezer and analyzed 

within two weeks of collection. HPLC with electrochemical detection was used to 

separate and analyze samples by manually injecting 20 µL of dialysate samples (CPu 

samples with 5 µL storage buffer consisting of 0.2 M perchloric acid, 0.2 µM ascorbic 

acid, and 0.2 µM EDTA) or 10 µL (samples from the NAc) into a 20 or 10 µL injection 

loop respectively. The mobile phase consisted of 75 mM NaH2PO4, 3 mM 1-

octanesulfonic acid, 0.125 mM ethylenediaminetetraacetic acid (EDTA), 9% acetonitrile, 

0.2 - 0.5% triethylamine, and pH = 3.0. The analytes were separated on a C18 column 

(Luna 100 x 3 mm, C18, 2.6 μm column; Phenomenex, Torrance, CA) using an isocratic 

LC-20AD pump (Shimadzu, Columbia, MD) operated at a flow rate of 0.4 mL/min. DA 

was electrochemically detected using an ESA 5014B microdialysis cell (E1 = -150 mV; 

E2 = +220 mV; ESA Coulochem III) with an in-line ESA 5020 guard cell positioned 

before injection loop. The voltage of the guard cell was set at +350 mV. Separation and 

quantification of the analytes were controlled by LC Solutions Software (Shimadzu, 

Columbia, MD). DA standards were run after the experiment and DA’s retention time 

was between 7 – 8 minutes. Integration and quantification of the DA peak area were 

performed against known concentrations of DA standards.  

2.7 Histological verification of microdialysis probe placement 

 After microdialysis experiments, mice were sacrificed by CO2 narcosis, 

decapitated, and their brains were removed. The brains were stored in 3.7% 

formaldehyde solution until used for histological verification. Briefly, brains were 

transferred into 2% dye and allowed to sit for about 18 hours. The brains were then 
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removed from the dye and rinsed 3 times each with 95% ethanol and water and were 

placed in 70% ethanol. Excess dye was washed off the brains by shaking in a 70% 

ethanol solution for 3 - 4 hours by affixing vials on a plate shaker. The solution was 

changed to a fresh 70% ethanol solution and allowed to shake overnight. The next day, 

the brains were rinsed with 95% ethanol solution by sitting them in the solution for 30 

minutes, followed by water wash where they were not shaken for 45 minutes. The 

brains were wiped dry and fixed in 2% agarose solution (Agarose, type 1, Molecular 

Biology Grade, 15 - 30 °C). After the agarose solidified with the imbedded brain, the 

brains were sliced into 150 µm coronal slices with a vibratome until slices from the 

striatal complex containing the CPu and NAc were obtained. The slices were viewed 

under a microscope (Olympus SZX7) and photomicrographs of the track of the 

microdialysis probe in the striatum were taken.  

2.8 Brain tissue content analysis of dopamine and its metabolites following 

toluene exposure 

 Following acute or repeated toluene inhalation, mice were sacrificed by cervical 

dislocation after which their brains were rapidly removed and placed on a petri dish 

covered with a paper towel soaked with ice cold aCSF (composition in mM: 147 NaCl, 

3.5 KCl, 2 Na2HPO4, 1.0 CaCl2, 1.2 MgCl2, and pH 7.4). The mouse brains were 

dissected and tissues were quickly taken from the brain regions of interest (the CPu and 

NAc). The dissected regions of interest were placed in labeled tubes, which were 

immediately frozen in liquid nitrogen and stored at -80 °C. On the day of analysis 

samples were weighed and then prepared for homogenization by adding 200 µL (NAc 

samples) or 250 μL (CPu samples) 0.1 M HClO4 to each sample. The samples were 
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then homogenized using a Misonix MicrosonTM ultrasonic cell disruptor (continuous, 12 - 

15 one second per pulse at 50% duty, 3 - 4 microtip setting; Misonix Incorporated, 

Farmingdale, NY).  The homogenates were centrifuge at 12,000 rpm for 10 minutes in a 

refrigerated tabletop centrifuge (Eppendorf centrifuge 5424, Eppendorf AG, Hamburg, 

Germany) and aliquots of the supernatant were analyzed for DA and its metabolites; 

3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), and 3-

methoxytyramine (3-MT) using HPLC with an electrochemical detector. The HPLC and 

electrochemical settings for tissue content were the same as was previously reported in 

the microdialysis section (see Section 2.6.3). The results were analyzed by integration 

of peak areas against calibration curves obtained from standards of DA and its 

metabolites and expressed as nM concentration. The remaining supernatant of the 

samples were used for protein analysis, which involves colorimetric detection and 

quantification of total protein from the tissue sample. Bovine serum albumin (BSA) 

standards (20 µL) or the tissue content samples were diluted with 30 µL distilled water 

and then 1 mL bicinchoninic acid (BCA) working reagent (50:1, BCA Reagent A: BCA 

Reagent B) was added to each sample. The content of each tube was mixed well and 

incubated in a 37 °C for 30 minutes in an Isotemp 205 Water Bath (Fisher Scientific, 

Pittsburgh, PA). After incubation, the tubes were cooled to room temperature and 200 

µL of their contents were pipetted into 96-well microplate and analyzed on a VersaMax 

ELISA Microplate Reader (Molecular Devices, Sunnyvale, CA) using SoftMax Pro 

software to obtained µg of protein in tissue. Tissue content DA and its metabolites were 

expressed as ng per mg protein. 
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2.9 Statistical data analysis 

 All behavioral (locomotor) data were analyzed with SPSS statistical software  

where data for acute toluene exposures was analyzed using a 3 x 10 repeated 

measures analysis of variance (ANOVA) with toluene treatment (0, 2000, and 4000 

ppm) as the between subjects factor, and the 3-minute time blocks as the within-

subjects factors. Locomotor data from the repeated toluene experiment were analyzed 

using a 3 x 7 x 10 repeated measures ANOVA with toluene treatment (0, 2000, and 

4000 ppm) as the between subjects factor with days and 3-minute time blocks as the 

within-subjects factors. Significant main effects and interactions were determined using 

Tukey’s post hoc contrasts and simple main effects analyses. Statistical analyses of all 

data from neurochemical measurements (slice SFCV, in vivo microdialysis, and tissue 

content analysis) were performed using GraphPad Prism Software (GraphPad Software 

Inc., San Diego, CA) and statistical significance determine by Student’s t-test, one-way, 

or two-way ANOVA followed by appropriate post-hoc tests. All data were expressed as 

mean ± standard errors of the means (SEM) where differences were considered to be 

statistically significant when P < 0.05. 
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CHAPTER 3 

Striatal Dopamine Dynamics in Mice Following Acute and 

Repeated Toluene Exposure 

Adapted from: 
Apawu, A. K., Mathews, T. A., Bowen, S. E., “Striatal Dopamine Dynamics in Mice 

Following Acute and Repeated Toluene Exposure”, in revision for Psychopharmacology. 
 

3.1 Introduction 

 Toluene is inhaled by individuals to achieve intoxication.41, 43, 142 The repeated 

deep inhalation of solvents like toluene can result in effects similar to alcohol 

intoxication with diminished mental and physical capabilities.41 While research on 

inhalants lags behind other drugs of abuse, the last decade has resulted in a significant 

increase in knowledge about inhalants’ pharmacological properties and their effects.37, 

41, 51, 142 Preclinical models of acute inhalant exposure have shown an extensive range 

of neurobehavioral effects that are concentration-dependent, reversible, and occur at 

concentration levels which are much lower than those necessary to produce explicit 

toxicological signs.37, 43, 56  A growing number of preclinical studies demonstrate that 

toluene influences a variety of neurotransmitter systems including, dopamine (DA), 

gamma-aminobutyric acid (GABA), and glutamate (see review37). Toluene, like other 

drugs of abuse, has been shown to elevate extracellular DA levels in the prefrontal 

cortex 71 and in the nucleus accumbens (NAc),36, 143 which is consistent with toluene’s 

reported rewarding effects. However, the neurochemical adaptions within the striatum 

following toluene exposure are not completely understood. Specifically, it is unclear 
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whether increases in extracellular DA levels are due to alterations in DA release and/or 

uptake mechanisms following toluene exposure.   

 The present experiments were designed to explore the neuro-adaptations of 

striatal DA release and uptake mechanisms using slice fast scan cyclic voltammetry 

(FSCV) following acute and repeated toluene inhalation. Toluene concentrations of 

2000 and 4000 ppm were chosen because they are behaviorally stimulating.74, 155-157 A 

major advantage of using FSCV to probe presynaptic DA dynamics is its high temporal 

resolution, which is on the order of milliseconds, and it provides the ability to 

differentiate DA release and uptake parameters.  

3.2 Hypothesis  

 Based on acute toluene exposure as measured by microdialysis,36, 71, 143 we 

hypothesized that, following acute toluene exposure, we would observe a dose-

dependent increase DA release, while decreasing DA uptake in the striatum. Although 

there are no neurochemical measurements evaluating striatal DA after repeated toluene 

exposure, we hypothesized that following repeated toluene exposure (i.e., withdrawal), 

we would observe an opposite effect (as observed with other abused compounds158, 159) 

with a decrease in both DA release and uptake in the striatum. 

3.3 Materials and Methods  

 The materials and methods used are as described in chapter 2, with, specific 

details provided here. Toluene vapor exposure and locomotor activity measurements 

were conducted using the procedure in sections 2.3 and 2.4, respectively. Briefly, after 

being weighed, mice were placed into an exposure chamber, given 5 minutes to 

acclimate, and then exposed to toluene or air vapors for 30 minutes during which time 
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locomotor activity was recorded. Chambers were opened to diffuse toluene vapors and 

locomotor activity was recorded for an additional 30 minutes recovery period. For each 

concentration of toluene (0, 2000, or 4000 ppm), the amount of toluene injected was 

calculated using the ideal gas equation, simplified for room temperature.151 Mice were 

used in either an acute (single day) or repeated (7 days) toluene or air (control) 

exposure. Prior to slice FSCV measurements, brain slices were obtained approximately 

45 minutes after acute toluene or 24 hours after repeated toluene exposure. Electrically 

stimulated DA release was evoked every 5 minutes using a single electrical pulse and 

the response was measured with a carbon fiber microelectrode. After stable release 

recordings (> 30 minutes), toluene was dissolved in increasing concentrations (0.01 – 

10 mM) into oxygenated artificial cerebrospinal fluid (aCSF) and each concentration 

was perfused over the slice for 30 minutes during which DA release and uptake were 

measured. The peak oxidation current for DA was converted into concentration based 

on a post-calibration factor calculated by calibrating the microelectrode with 3 µM DA.  

3.3.1 Data Analysis      

 Locomotor activity was analyzed with SPSS software. Acute toluene data were 

analyzed using a 3 x 10 repeated measures analysis of variance (ANOVA) with toluene 

treatment (0, 2000, and 4000 ppm) as the between-subjects factor, and the 3-minute 

time blocks as the within-subjects factors. Repeated toluene data were analyzed using 

a 3 x 7 x 10 repeated measures ANOVA with toluene treatment (0, 2000, and 4000 

ppm) as the between-subjects factor, with days and the 3-minute time blocks as the 

within-subjects factors. An alpha level of P < 0.05 determined statistical significance. 

Tukey’s post hoc contrasts and simple main effects analyses were used to determine 
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the significant main effects and interactions. Statistical analysis of voltammetry data was 

performed using GraphPad Prism Software. The criteria for statistical significance for 

DA release and uptake parameters were set to P < 0.05. Statistical significance was 

determined by one-way ANOVA with Dunnett's Multiple Comparison Test. All data are 

reported as mean ± standard errors of the means (SEM). 

3.4 Results 

3.4.1 Distance traveled during and following acute toluene exposure    

 As seen in Figures 3.1A and B, a significant main effect was observed for acute 

toluene exposure (F2,53 = 12.25, P < 0.001), time (F9,477 = 2.01, P < 0.05), as well as a 

significant time x toluene interaction (F18,477 = 2.14, P < 0.01). Post hoc analysis 

revealed that acute exposure to 2000 and 4000 ppm toluene significantly increased 

locomotor activity of mice across the 30 min exposure period as compared to the air-

only controls (P < 0.01) with no significant differences between the 2000 and 4000 ppm 

concentrations.    

 Recovery from acute toluene exposure also resulted in concentration-dependent 

effects in locomotor activity (Figures 3.1A and C). Significant main effects were 

observed for toluene treatment (F2,53 = 17.95, P < 0.001), time (F9,477 = 53.76, P < 

0.001), as well as a significant time x toluene interaction (F18,477 = 8.20, P < 0.01). Post 

hoc analysis revealed that previous exposure to both concentrations of toluene 

significantly increased locomotor activity of mice as compared to the air-only controls (P 

< 0.01), with activity decreasing significantly over 30 min to levels comparable to air-

controls. 
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Figure 3.1: Locomotor activity during and after acute toluene exposure. A) A 
plot of distance traveled (cm ± SEM) versus time (3 minute bins) with three defined 
partitions, from left to right: 5 minute acclimation, 30 minute toluene exposure, and 
30 minutes recovery period. B) Effect of acute toluene exposure on total distance 
traveled. C) Total distance traveled during recovery from acute toluene exposure. 
Statistical significance was determined using one-way ANOVA with Dunnett's 
Multiple Comparison Test. ***P < 0.001 (air-control, n = 15; 2000 ppm, n = 15; 4000 
ppm, n = 15). 
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3.4.2 Striatal dopamine release and uptake following acute toluene exposure 

 Striatal DA release and uptake (in caudate putamen (CPu), NAc core and shell) 

were compared between air-controls (Figure 3.2) and mice receiving acute toluene 

exposure (0, 2000, or 4000 ppm) followed by a 30-minute withdrawal period. 

Voltammetry data from control (air) mice had the highest stimulated DA release and DA 

uptake rates in the CPu, followed by the NAc core, then NAc shell, consistent with 

previously reported regional differences in DA release/uptake dynamics in the 

striatum160-164. One-way ANOVA with Dunnett's post test revealed that 45 minutes after 

acute exposure to 4000 ppm toluene produced significant elevation in electrically 

evoked DA release (Figure 3.2C) across the sub-anatomical brain regions in the 

striatum (CPu: F2,134 = 3.80; P < 0.05, NAc core: F2,93 = 5.22; P < 0.01, and NAc shell 

F2,60 = 5.37; P < 0.05) compared to control mice. Acute toluene (2000 and 4000 ppm) 

exposure had no effect on DA uptake rates across the striatal regions (Figure 2D, CPu: 

F2,134 = 2.51; P > 0.05; core: F2,93 = 1.36; P > 0.05,  shell F2,60 = 2.06, P > 0.05).  
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Figure 3.2: Acute toluene exposure increases electrically stimulated DA 
release with no effect on DA uptake. A) Toluene exposure and neurochemical 
protocol. Forty-five minutes after acute toluene exposure the brains were harvested 
and DA release and uptake dynamics were assessed in the striatum. B) 
Representative cyclic voltammograms (inset) and concentration versus time traces. 
C) Stimulated DA release after a single 30-minute exposure to 0, 2000, or 4000 ppm 
of toluene. D) DA uptake rates across sub-anatomical brain regions of the striatum. 
Data are expressed as means ± SEMs (n = 6-12/brain region). Statistical 
significance was determined by one-way ANOVA with Dunnett's Multiple 
Comparison Test; where *P < 0.05, **P < 0.01. 
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 To determine if direct application of toluene on a brain slice influences DA 

release and uptake dynamics, cumulative concentrations (0.01, 0.03, 0.1, 0.3, 10 mM) 

of toluene were perfused over brain slices from either air-control or 4000 ppm toluene 

exposed animals. Electrically evoked DA release was measured every 5 minutes for 30 

minutes for each dose of toluene. Both control and 4000 ppm toluene mice showed a 

decrease in electrically evoked DA when toluene was directly applied to the slice. 

However, acute toluene exposure (4000 ppm) shifted the dose response curve to the 

right compared to the control mice (Figure 3.3). The half maximal inhibitory 

concentration (IC50) was significantly reduced (for toluene-exposed mice (IC50 not 

reported because plot is not sigmoidal) compared to control mice (174 ± 2 μM; 

Student’s t-test, P = 0.01, n = 4-5/ treatment group), suggesting toluene exposed mice 

are less sensitive to the effects of toluene perfusion. Additionally, the decay side of the 

concentration versus time curve was evaluated, which showed that DA uptake was 

significantly reduced at concentrations equal to and greater than 0.03 and 0.10 mM in 

air- and toluene-treated mice, respectfully (Figure 3.4).  
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Figure 3.3: Right shift in toluene dose response curve after previous 
exposure to toluene. Electrically evoked DA release was assessed during 
perfusion of cumulative concentrations of toluene over the CPu. The shift in the 
dose-response curve to the right suggests that toluene exposed mice are less 
sensitive to direct application of toluene compared to air-controls. P = 0.01, n = 4-
5/treatment group, Student’s t-test. 
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Figure 3.4: DA uptake during perfusion of cumulative concentrations of toluene 
over the CPu. A) Toluene exposure and neurochemical protocol. B) Effect of toluene 
perfusion on DA uptake was measured from air-control mice and C) from mice 
acutely exposed to 4000 ppm of toluene. Data are expressed as means ± SEMs (n = 
4-5/treatment group). Statistical significance was determined by one-way ANOVA 
with Dunnett's Multiple Comparison Test; where ***P < 0.001, **P < 0.01, *P < 0.05, 
compared to air-control. 
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3.4.3 Distance traveled during and following repeated toluene exposure  

 As seen in the exposure panels of Figure 3.5, repeated toluene treatment had a 

significant main effect (F2,43 = 3.37, P < 0.05). There was also a main effect for Day 

(F6,258 = 7.69, P < 0.001), and a significant Day x Toluene treatment interaction (F12,258 = 

3.72, P < 0.001). Significant main effects were also observed for Time block (F9,387 = 

1.89, P = 0.05), and for the Time block x Toluene treatment interaction (F 18,387 = 1.61,  

P = 0.05). As shown in Figure 3.5E and F, repeated toluene treatment produced 

increases in locomotor activity across the exposure session and across days of 

exposure with 4000 ppm of toluene producing the greatest increases in activity (P < 

0.05).     

 As seen in the recovery panels of Figure 3.5, recovery from repeated toluene 

treatment produced a concentration-dependent effect in locomotor activity with patterns 

of locomotor activity changing when toluene was cleared from the chamber. There was 

no main effect for Toluene treatment or for Day (P > 0.05). There was a significant Day 

x Toluene treatment interaction (F12,258 = 2.82, P < 0.01). In general, activity decreased 

across exposure days with locomotor activity after the 4000 ppm toluene exposure 

producing the greatest decrease. A significant main effect was observed for Time block 

(F9,387 = 45.27, P < 0.001) and for the Time block x Toluene treatment interaction (F18, 

378 = 5.28, P < 0.001). During the recovery period, locomotor distance traveled 

decreased as the session progressed with toluene animals being more active initially 

and less active finally than their air-controls.  
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Figure 3.5: Locomotor activity during and after repeated toluene exposure. 
The effects of 0 (air-control), 2000, or 4000 ppm inhaled toluene on mouse 
locomotor activity. The left-most partition of each graph represents a 5 minute 
acclimation period, the middle partition represents 30 minute toluene exposure, 
with the right partition representing 30 minute post toluene exposure. The distance 
traveled by mice was measured during and after toluene exposure and analyzed 
using repeated measures ANOVA with toluene treatment (2000 or 4000 ppm) as 
the between subjects factor, and the 3 minute time blocks as the within-subjects 
factors. A) A plot of distance traveled (cm ± SEM) versus time (3 minute bin) for 
air-control. B) A plot of distance traveled (cm ± SEM) versus days of toluene 
exposure (days 1, 4, and 7 selected for simplicity). C) Distance traveled (cm ± 
SEM) versus time (3 minute bin) for 2000 ppm toluene treatment with 
corresponding D) distance versus day plot. E) A plot of distance traveled (cm ± 
SEM) versus time (3 minute bin) and F) distance-day plot for repeated 4000 ppm 
toluene treatment. Statistical significant main effects and interactions were 
determined by Tukey’s post hoc contrasts and simple main effects analyses (air-
control, n = 14; 2000 ppm, n = 16; 4000 ppm, n = 16). 
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3.4.4 Striatal dopamine dynamics after repeated toluene exposure   

 Electrically evoked DA release was measured in the three discrete sub-regions of 

the striatum 24 hours after 7 days of either 2000 or 4000 ppm of toluene exposure. 

Repeated toluene exposure following withdrawal had no effect on stimulated DA release 

(F2,85 = 0.388, P > 0.05; Figure 3.6C) or DA uptake in the CPu in either 2000 or 4000 

ppm toluene exposure when compared to control mice (F2,85  = 0.265, P > 0.05; Figure 

3.6D).     

 After repeated toluene exposure and a 24 hour withdrawal period, there was a 

significant decrease in electrically evoked DA release in the NAc core (F2,67 = 15.4, P < 

0.001, Figure 3.6C) and shell (F2,54 = 13.9, P < 0.001, Figure 3.6C) compared to their 

air-controls. After seven days of repeated toluene exposure, electrically-stimulated DA 

release from the NAc core had an approximately 25% reduction in DA release in 2000 

and 4000 ppm toluene exposed mice, (2000 ppm: 0.6 ± 0.03 µM; n = 9, 4000 ppm: 0.6 

± 0.04 µM; n = 6) compared to air-controls (0.8 ± 0.05 µM; n = 6, Figure 3.6C). In a 

similar manner, repeatedly exposed toluene-treated mice had an approximately 25 and 

50% decrease in evoked DA release in the NAc shell of 2000 and 4000 ppm toluene 

exposed mice respectively (2000 ppm: 0.3 ± 0.02 µM; n = 7, 4000 ppm: 0.2 ± 0.03 µM; 

n = 4) compared to air-controls (0.4 ± 0.02 µM; n = 8, Figure 3.6C). An inherent 

advantage of using FSCV is its ability to resolve DA release and DA uptake. DA uptake 

rates from the NAc core and shell were not different after repeated toluene exposure 

following withdrawal compared to their air-controls (Core: F2,67 = 0.932, P > 0.05, Shell: 

F2,54 = 0.182, P >0.05, Figure 3.6D).  
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Figure 3.6: Repeated exposure to toluene attenuates electrically stimulated DA 
release but not uptake in the nucleus accumbens (NAc). A) Toluene exposure 
and neurochemical protocol. B) Representative cyclic voltammograms (inset) and 
concentration versus time traces for the measurements in the NAc core. Below the 
concentration versus time traces are corresponding color plots, where the x-axis 
represents time in seconds, the y-axis is the applied potential of the triangular 
waveform, and the current is shown in color. The triangle below the color plots 
indicates the point of electrical stimulation. C) Maximum electrically-evoked DA 
release from air-control, 2000, and 4000 ppm repeated toluene exposed mice across 
sub-anatomical brain regions in the striatum. D) DA uptake rates after repeated 
toluene treatment. Data are expressed as means ± SEMs (n = 4 -10/treatment 
group). Statistical significance was determined by one-way ANOVA with Dunnett's 
Multiple Comparison Test; where ***P < 0.001 compared to air-control. 
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3.5 Discussion 

 The present study was undertaken to evaequate the components of the striatal 

DA system following acute and repeated toluene exposure (2000 or 4000 ppm) by using 

slice FSCV, a technique with millisecond temporal resolution allowing for differentiation 

of DA release and uptake parameters. Previous studies have shown that acute and 

repeated toluene administrations alter locomotor activity as well as striatal DA 

dynamics.36, 56, 68, 143 However, the neurochemical reports to date have focused mainly 

on how toluene influences striatal dopaminergic changes using microdialysis, which 

does not provide the temporal resolution to tease apart contributions from release and 

uptake. In the present study, slice voltammetry revealed that stimulated striatal DA 

release was potentiated after an acute exposure to 4000 ppm of toluene with no effect 

on striatal DA uptake. A single exposure to toluene resulted in a decreased sensitivity to 

increasing concentrations of toluene perfusion compared to their air-control. To better 

understand how the striatal complex adapts to the neurobiological changes of repeated 

toluene exposure, a 7-day toluene protocol followed by a 24 hour withdrawal period was 

evaluated. Unlike acute toluene exposure, repeated toluene exposure attenuated DA 

release in the NAc at all doses with no difference in DA uptake rates, while there were 

no differences in either DA release or uptake in the CPu. Together, these findings point 

to the ability of toluene to differentially regulate pre-synaptic DA release depending on 

the exposure and withdrawal length with no effect on DA uptake across the striatum.     

 Behaviorally, acute 30 min toluene exposure to either 2000 or 4000 ppm 

increased locomotor behavior above what was observed for air-control animals and 

these increases in activity were observed for approximately 30 min post exposure. 
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These results are similar to the increases in locomotor activity reported for acutely 

inhaled toluene and extend earlier work demonstrating dose-dependent increases in 

locomotor activity at concentrations between 500 to 5000 ppm with the largest 

increases occurring in the range of 2000 to 5000 ppm.68, 156, 165, 166   

 Neurochemically, this FSCV study provides important insight on how toluene 

influences DA release in acute and repeated toluene exposure models, while 

demonstrating toluene inhalation following withdrawal does not alter DA uptake in the 

striatum. After a single 4000 ppm toluene exposure there was significant potentiation in 

electrically-stimulated DA release across the sub-regions of the striatal complex, while 

there was no difference in DA uptake rates. Previous microdialysis studies suggested 

that the rise in extracellular DA levels was a reduction of DA uptake attributed to 

toluene.143 A limitation of using microdialysis to interpret release and uptake parameters 

is that it does not have the temporal resolution to separate these components, but slice 

voltammetry does. Although our coronal slices contain only the striatal terminals and 

lacks input from the midbrain regions such as the ventral tegmental area and substantia 

nigra, toluene exposure prior to FSCV demonstrated significant potentiation in DA 

release even with a 30 min recovery period. Taken together, the FSCV results 

demonstrate the sensitivity of slice FSCV to measure these subtle but persistent DA 

changes after toluene inhalation followed by a 30 min recovery period. Finally, our slice 

voltammetric data suggests that acute toluene inhalation has no direct effect on DA 

uptake across the striatum.     

 Together, these results suggests that acute exposure to 4000 ppm toluene alters 

the DA release mechanism in the CPu, which was further supported by results acquired 
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after direct application of toluene over the slice. Unlike acute toluene exposed mice, air-

treated mice had a significant decrease in electrically evoked DA when toluene was 

directly applied indicating that toluene itself has the ability to influence DA release. 

Despite these large concentrations (> 0.01 mM) of toluene, slice FSCV results suggest 

that toluene is interacting directly at the DA terminal; however, its target is unknown. 

The toluene dose-response curve is not like DA receptor agonist dose response 

curves110, 167, 168, as it does not asymptotically approach zero at the highest 

concentrations of toluene perfusion. Instead the toluene dose response curves for both 

air- and toluene-treated animals asymptotically approaches 70% and 90%, respectively 

(an ~ 30% and ~ 10% reduction in stimulated DA release) suggesting that toluene may 

be acting upon non-dopaminergic receptors such as N-methyl-D-aspartate (NMDA) 

receptors, metabotropic glutamate receptor, or the nicotinic receptor, mediating this 

response (for review see Bowen et al. 2006 37). To determine which of these receptors 

may be responsible for the decrease in DA release, future experiments should evaluate 

antagonists of these receptors to determine if they can block the effects of direct 

application of toluene. Interestingly, when acute concentrations of toluene were directly 

applied to the slice, FSCV detected a decrease in DA uptake rates in air- and toluene 

treated mice (Figure 3.4). The main objective when applying toluene directly to brain 

slices was to evaluate DA release dynamics, even so we discovered that considerably 

high toluene concentrations had to be used to induce subtle but significant changes in 

the DA dose response curve. Thus, there appears to be a divergent effect on DA 

transport kinetics depending on the route of administration of toluene. For example, 

toluene inhalation followed by a 30 minute recovery phase does not influence DA 



www.manaraa.com

69 
 

 
 

uptake rates, while direct application of toluene causes a significant decrease in DA 

uptake in both air- and toluene treated animals. Future studies, should further evaluate 

these route difference in administering toluene; in particular, evaluation of DA uptake 

immediately after toluene inhalation versus direct application. Overall, the acute toluene 

FSCV results demonstrate that either pretreatment with toluene inhalation or direct 

application of toluene leads to alterations in DA release, while only direct application of 

millimolar concentrations of toluene decreases DA uptake in the CPu.    

 As compared to acute exposures, repeated administrations of toluene (4000 

ppm) over 7 days resulted in increased locomotor activity across days of exposure with 

marked decreases in electrically-stimulated DA release observed in the NAc core and 

shell 24 hrs after the last toluene exposure. The increases in locomotor activity with 

repeated exposure to 4000 ppm toluene in the present study are similar to previous 

reports for inhaled toluene and other abused solvents64, 74, 157, 169, 170 and can be 

interpreted as sensitization to toluene. Previous studies have also reported 

development of sensitization after toluene was repeatedly administered 

intraperitoneally38, 84, 171 or orally.72 Conversely, examination of the recovery data (see 

Fig. 3.5E, right side) shows that animals returned to baseline levels more quickly as the 

days of repeated exposure continued, suggesting the development of tolerance to 

toluene’s stimulating behavioral effects. These observed effects of toluene are similar to 

other investigations that have reported the emergence of tolerance after repeated 

exposure to several abused inhalants.169, 172   

 Using slice FSCV to evaluate 7-day toluene exposure followed by 1-day of 

withdrawal, our repeated toluene results showed no difference in DA uptake rates 
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throughout the striatal complex as observed for the acute toluene inhalation. Therefore, 

toluene’s mechanism of action after a withdrawal period does not appear to be like other 

drugs of abuse (e.g., cocaine, methylphenidate, or amphetamines) that inhibit or 

reverse the direction of the DA transporter to elevate extracellular DA levels in the 

striatum. Instead, both the acute and repeated toluene inhalation following withdrawal 

resulted in altering stimulated DA release dynamics in the striatal terminal most likely 

through a heteroreceptor.     

 Repeated 2000 and 4000 ppm toluene exposure followed by 1-day of withdrawal 

induced a significant reduction in evoked-DA release in both the NAc core and shell, 

suggesting repeated exposure to toluene may be brain region specific since presynaptic 

DA release in the CPu remained unchanged after 7 days of repeated toluene exposure. 

This is the first FSCV study to evaluate DA dynamics after repeated toluene exposure 

following 1-day of withdrawal. Slice FSCV results demonstrated that repeated toluene 

exposure lead to specific dopaminergic changes in the NAc. The fact that this 

attenuation in stimulated DA release was not observed immediately after acute toluene 

exposure suggests that repeated exposure induces significant neurobiological changes 

(i.e., sensitization) in the NAc.  

 There are numerous reports on the acute effects of toluene on striatal 

dopaminergic dynamics, but relatively little neurochemical evidence of repeated 

exposure after a sub-chronic or chronic toluene protocol and even fewer following a 

withdrawal period. Few studies have evaluated the dopaminergic tone after repeated 

toluene exposure, and those that have used various doses and exposures of toluene. 

Long-term toluene (80 ppm and higher) exposure leads to an increase in DA D2 agonist 
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affinity in the CPu, but DA D2 expression is not different.173 A tissue content study 

demonstrated that DA catabolism was decreased in the putamen of rats after sub-

chronic toluene (40 ppm) exposure, which was attributed to a decreased DA 

degradation rate as the DA/DOPAC was elevated. Further, repeated toluene exposures 

in rats potentiated the extracellular DA response in the NAc to cocaine.75 However, 

baseline DA levels in the NAc were not different between the repeated saline and 

toluene treated animals.75 Our slice FSCV results would suggest that a decrease in 

stimulated DA release could possibly reflect lower amounts of DA in the terminal, which 

could lead to decreased extracellular DA levels in the striatum. However, since DA 

uptake is not altered it is possible that the change in DA release is not sufficient to 

influence extracellular DA levels. Although extracellular DA levels were not different in 

the microdialysis study by Beyer et al., this could be a result of the different 

experimental procedures: 1) toluene levels of 8000 ppm versus 2000 or 4000 ppm, 2) 

an intermittent repeated exposure (5 days with 2 days off followed by 5 days) versus 7 

continuous days of repeated toluene exposure followed by 1 day of withdrawal, 3) 

species differences (rats versus mice), and/or 4) quantitative microdialysis was not used 

to evaluate basal DA levels. The attenuation in electrically-stimulated DA release in the 

NAc after repeated toluene exposure could be a result of a compensatory down 

regulation of the DA system; although further studies are required to verify this 

hypothesis. In order to have a more comprehensive understanding of striatal and 

accumbal effects of toluene, other neurotransmitter systems like GABA or glutamate 

should also be evaluated. Taking the acute and repeated toluene exposure followed by 

a withdrawal period together, our observations highlight the biphasic DA release 
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response to toluene exposure depending on whether it was acutely or repeatedly 

administered. These changes in striatal DA release are not a result of toluene 

interacting with the DA transporter, since our FSCV results showed no difference in DA 

uptake either after acute or repeated toluene exposure. 

 3.6 Conclusions 

 In summary, the present studies extend earlier work showing that acute and 

repeated exposure to toluene potentiates locomotor activity. Acutely, toluene exposure 

elevated stimulated DA release across the striatum, while repeated toluene inhalation 

followed by 1 day of withdrawal attenuated DA release in the NAc regions only. Whether 

toluene exposure is acute or repeated, DA uptake rates were not different across the 

striatum, suggesting that toluene has no effect on DA transporter kinetics. Furthermore, 

the toluene dose-response curve emphasizes that direct application of toluene to the 

slice augments both terminal DA release and DA uptake, albeit through what receptor 

sub-type toluene is influencing DA release is currently unknown.  
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CHAPTER 4 

An In-depth Examination of Acute Toluene Exposure on Striatal 

Dopamine System 

4.1 Introduction 

 The impact of toluene inhalation on the dopamine (DA) system has been of great 

interest due to the central role DA plays in addiction and reward seeking behaviors.174-

177 Since increases in dopaminergic neurotransmission, particularly at the mesolimbic 

terminal such as the nucleus accumbens (NAc) has been associated with the locomotor 

stimulatory effect of drugs of abuse,141, 171 a number of studies have utilized behavioral 

assays together with neurochemical and/or physiological techniques to understand 

toluene’s action in the DA terminal regions.36, 71, 83, 171, 178 While the current behavioral 

and neurochemical/physiological data available suggest that toluene can alter DA 

neurotransmission, the neural mechanisms underlying toluene’s action on the DA 

system are still not well understood.36, 38, 83, 143, 166, 179 In our initial characterization of the 

behavior and neurochemical effect of toluene inhalation (Chapter 3), we showed that 

acute exposure to 2000 and 4000 ppm toluene increased locomotor activity of mice 

while, neurochemically, 4000 ppm toluene inhalation potentiated electrically stimulated 

DA release across the caudate putamen (CPu) and the NAc (Figure 3.2). These 

observations have led to numerous questions that need to be addressed in order to 

better understand how toluene interacts with the DA system.  

 One such question is “How does acute toluene exposure exert immediate effect 

on the DA dynamics, considering that neurochemical measurements were made after 

30 minutes of withdrawal from the toluene treatment?” Because it was shown that the 
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behavioral effect of toluene significantly dropped to levels comparable to that of their air-

control counterparts by the end of the 30 minutes of withdrawal (Figure 3.1A), it is 

possible that important details of toluene’s immediate action on DA dynamics could be 

missed when fast scan cyclic voltammetry (FSCV) measurements were made 

afterwards. Thus, in the present chapter, FSCV measurements of DA release and 

uptake were taken following 30 minute of toluene treatment in order to examine the 

immediate action of toluene on the DA system.  

 Furthermore, our previous data (Chapter 3) begs the question of whether the 

alterations in DA release across the striatum were caused by inhibition of the 

presynaptic DA autoreceptors. Presynaptic DA autoreceptors consist of D2 and D3 

receptor subtypes which are differentially expressed across the brain with the islands of 

Calleja having the highest density of the D3 receptors.180 Across the striatal region of 

the brain, D3 receptors have higher density in the ventral striatum (NAc) than in the 

dorsal striatum (CPu).181 Within the ventral striatum, D3 receptors are expressed more 

in the NAc shell than the core.182-185 Meanwhile, the D2 receptors are expressed 

homogenously across the striatum.184, 186 There are numerous reports in the literature 

that have implicated D2/D3 autoreceptors in the action of addictive drugs. For example, 

in both human and animal research, long term cocaine or nicotine use can increase D3 

receptor density in the striatum and substantia nigra.184, 187-190 Moreover, DA D2 

receptor-deficient mice have demonstrated enhanced sensitivity to the rewarding effects 

of cocaine, while sub-chronic exposure to low (≥ 80 ppm) concentrations of toluene 

increases the affinity of D2 receptor agonist and DA receptor density.191-193 Presynaptic 

autoreceptors play an integral role in regulating extracellular DA levels through 
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feedback inhibition, where activation of the receptors at the nerve terminal by locally 

released DA leads to inhibition of DA synthesis and further DA release.182, 194-197 In the 

initial characterization of toluene’s effect on DA dynamics, we observed impaired 

stimulated DA release in the NAc core and shell following repeated toluene exposure 

(Figure 3.6), which has led to the hypothesis that one potential target of abused toluene 

could be the presynaptic DA autoreceptors. It is possible that the observed decrease in 

DA release in the NAc core and shell could be a result of downward regulation of DA 

release mediated by DA autoreceptors in response to repeated toluene exposure. Since 

the attenuation in DA release was exclusive to the NAc, we expect that D3 

autoreceptors, which are prominently expressed in the NAc, could be playing a major 

role in toluene’s action. The implication of our hypothesis is that impairment of 

presynaptic DA autoreceptors may potentiate DA neuron excitability and DA release,193 

which could account for the increase in DA release across the striatum following acute 

exposure to 4000 ppm toluene (Figure 3.2C).  

 In the present work, slice FSCV and pharmacological testing with a potent DA D3 

autoreceptor agonist, (±)-7-hydroxy-2-dipropylaminotetralin hydrobromide (7-OH-

DPAT), was used to examine the functionality of presynaptic DA D3 autoreceptors in 

toluene exposed and air-control mice. The functionality of presynaptic D3 autoreceptors 

has been widely studied using 7-OH-DPAT.181, 198, 199 An important advantage of using 

slice FSCV in this work is that it allowed us to selectively probe presynaptic 

autoreceptors without any contributions from the postsynaptic terminal. 200 

 Another critical question this chapter seeks to address is, “Do the changes in DA 

release induced by acute toluene exposure lead to alterations in extracellular DA 
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levels”? To answer this question, we built a toluene exposure chamber that allowed 

dialysis samples and activity data to be collected simultaneously from a free-moving 

mouse during exposure to either toluene or air. This set-up allowed for evaluation of DA 

levels before toluene inhalation began, during and after exposure to see the direct effect 

of toluene on extracellular DA levels in the mouse striatal brain region. 

 Lastly, because preliminary data showed changes in DA release, another 

question that this chapter will address is whether these alterations are a result of 

alterations in DA synthesis and catabolism, which can be measured by evaluating DA 

tissue content. Herein, DA levels and its metabolites 3,4-dihydroxyphenylacetic acid 

(DOPAC), homovanillic acid (HVA), and 3-methoxytyramine (3-MT) were measured 

using tissue content analysis, which exclusively examined intracellular concentrations of 

neurotransmitters and their metabolites. 

4.2 Materials and Methods  

4.2.1 Toluene exposure and locomotor activity measurement 

 Acute toluene treatments before voltammetry and tissue content analysis used 

the same set-up described in Section 2.3 but without a recovery phase. Mice were 

exposed to 0 (air-control), 2000, or 4000 ppm of toluene vapor for 30 minutes, during 

which their locomotor activities were measured using infrared (IR) emitter-detector 

arrays attached to the chamber.  

4.2.2 Slice fast scan cyclic voltammetry  

 Immediately after 30 minutes of toluene/air exposure, mice were sacrificed, and 

their brains were removed (< 10 minutes) and prepared for slice FSCV measurements 

using the procedure discussed in Section 2.5. To determine if the DA D3 autoreceptor 
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was influenced by toluene, cumulative doses (0.001, 0.01, 0.03, 0.1, 0.3, 1, and 10 µM) 

of DA D3 autoreceptor agonist, 7-OH-DPAT were perfused over brain slice following a 

stable DA signal. The effect on DA release and uptake was measured every 5 minutes 

for 30 minutes per dose of 7-OH-DPAT. DA was measured as current versus time 

traces that were converted into concentration using a post-calibration factor of 

microelectrode. The concentrations versus time plots were analyzed for DA kinetics (DA 

release and uptake) using non-linear fits based on Michaelis-Menten sets of 

equations.106, 110, 152-154 

4.2.3 Brain tissue content analysis of dopamine and its metabolites 

 Following 30 minutes of toluene/air exposure, mice were sacrificed by cervical 

dislocation and their brains were quickly removed, dissected into discrete regions of 

interest, and prepared for tissue content using the same procedure outlined in section 

2.8. 

4.2.4 Simultaneous in vivo microdialysis and locomotor activity measurement  

 The procedure for simultaneous in vivo microdialysis and locomotor activity 

measurement was first described in section 2.6. A graphical depiction of the time-line for 

making the measurements in this acute toluene study is given in Figure 4.1. 
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Figure 4.1: Graphical representation of the time-line for behavior and 
microdialysis data collection. The experiment was partitioned into the following 
sections: 2 hours of baseline, 30 minutes of toluene exposure, 1 hour recovery, 15 
minutes of stimulated DA release with 60 mM high K+ artificial cerebrospinal fluid 
(aCSF), and 1 hour post high K+ aCSF. High K+ concentration aCSF consist of 
(mM): 60 KCl, 89 NaCl, 2.0 Na2HPO4, 1.0 CaCl2; 1.2 MgCl2; pH 7.4). Dialysate 
samples were collected every 15 minutes throughout the experiment. Locomotor 
activity was monitored the entire time. 
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4.2.5 Data analysis 

 Statistical analyses of data from locomotor activity measurements and in vivo 

microdialysis were performed with repeated measures analysis of variance (ANOVA) 

using SPSS software and statistical significance was determined using Tukey’s post 

hoc contrasts, simple main effects analyses, and Student t-test. Statistical analyses of 

FSCV and tissue content data were performed with one-way ANOVA followed by 

Dunnett’s Multiple Comparison Test, and Student t-test using GraphPad Prism 

Software. Data were expressed as mean ± standard error of the mean (SEM) and 

statistical significance determined as P < 0.05. 

4.3 Results  

4.3.1 Distance traveled during acute toluene exposure 

 Locomotor activity before and during toluene exposure was measured and 

expressed as distance traveled in three minutes bins (Figure 4.2A), which is partitioned 

into two main panels. The first panel represents the distance traveled by mice during 5 

minutes of acclimation (baseline) and the second panel shows distance traveled during 

30 minutes of toluene exposure. Statistical analysis of this data was done using 3 x 10 

repeated ANOVA with toluene treatment (0, 2000, and 4000 ppm) as the between 

subjects factor, and the 3-minute time blocks as the within-subjects factors. The result 

obtained showed a significant main effect of Time (F5,140 = 5.82, P < 0.05, n = 5-8/group) 

but not Time x Toluene interaction, even though the effect seems trending (F10,140 = 

1.75, P = 0.052, n = 5-8/group). This result suggests that the locomotor activity of mice 

changes with time but is not dependent on toluene treatment. There was no effect of 

toluene dose (F2,28= 0.76, P = 0.48 , n = 5-8/group). The locomotor activity was also 
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condensed to the total distance traveled throughout the 30 minutes of toluene/air 

exposure (Figure 4.2B). One-way ANOVA analysis of the toluene treatment groups 

showed no effects of toluene treatment on locomotor activity (F2,14 = 1.439, P = 0.26, n 

= 5-8/group). This lack of effect of acute toluene exposure on locomotor activity is not 

consistent with what we previously demonstrated in our initial behavior characterization 

(Figure 3.1) but we believe the disparity may be due to low statistical power in the 

present data.  

 

 

 

 

 

 

 

Figure 4.2: Effect of acute toluene exposure on locomotor activity of mice. A) 
Locomotor activity expressed as distance traveled versus time in 3 minutes bins. 
Before the dashed line is the activity during 5 minutes of acclimation and after the 
dashed line demonstrates activity during 30 minutes of toluene/air exposure. There 
was a significant main effect of time (P < 0.05) but no effect of toluene dose (P > 0.05) 
B) Total distance traveled versus toluene dose. Data as mean ± SEM, n = 5-8/group. 
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4.3.2 Dopamine release and uptake following acute toluene exposure 

 Slice FSCV was used to characterize the effect of acute toluene exposure on 

presynaptic DA dynamics in three sub-anatomical regions in the striatum of mouse the 

brain: the CPu, NAc core and shell. Mice were exposed to 30 minutes of air, 2000 or 

4000 ppm toluene vapor and immediately afterwards (in less than 10 minutes) were 

sacrificed and their brains prepared for FSCV measurement. The measured electrically 

evoked DA release was expressed as maximum stimulated DA release per a single 

electrical pulse (µM) and DA uptake as maximum velocity of the DA transporter (Vmax in 

µM/s). The DA measurements from the striatum of air-control mice showed the highest 

DA release and uptake in the CPu, followed by the NAc core and then the NAc shell. 

Statistical analysis of the data obtained using one way ANOVA showed a significant 

main effect of toluene treatment on DA release in all three sub-anatomical brain regions 

(CPu: F2,48 = 6.27; P = 0.004,; NAc core: F2,42 = 8.36, P < 0.001; NAc shell: F2,39 = 10.36, 

P < 0.001; Figure 4.3). Dunnett’s Multiple Comparison Test between treatments 

revealed that, following acute exposure to 2000 ppm of toluene, DA release in both the 

CPu (1.70 ± 0.13 µM, n = 5) and the NAc core (0.66 ± 0.06 µM, n = 5) were not altered 

compared to their air-controls (CPu: 1.77 ± 0.14 µM, n = 6; NAc core: 0.49 ± 0.06 µM, n 

= 5, Figure 4.2). However, acute exposure to 2000 ppm toluene vapor did increase DA 

release in the shell (2000 ppm toluene: 0.53 ± 0.05 µM, n = 5; air-control: 0.26 ± 0.04 

µM, n = 4; P < 0.05). Consistent with earlier observations (Figure 3.2), acute exposure 

to 4000 ppm toluene increased electrically evoked DA release in the three brain regions 

(CPu: 2.23 ± 0.10 µM, n = 7; NAc core: 0.95 ± 0.04 µM, n = 5 and NAc shell: 0.63 ± 

0.07 µM, n = 5) as shown by current-time traces and background subtracted cyclic 
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voltammograms (Figure 4.3B). Similarly, DA uptake rates in the CPu and the core were 

not altered following toluene treatment compared to their air-controls (CPu: F2,51 = 0.70, 

P = 0.50; NAc core: F2,42 = 0.78, P = 0.46; one-way ANOVA, Figure 4.3E). Interestingly, 

only 2000 ppm toluene exposure elevated DA uptake in the NAc shell (2000 ppm: 2.22 

± 0.15 µM/s, n = 5; air-control: 1.31 ± 0.14 µM/s, n = 4; P < 0.001, Dunnett’s Multiple 

Comparison Test).  
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Figure 4.3: Effect of acute toluene exposure on DA release and uptake. A) 
Acute toluene exposure and FSCV experimental timeline which includes 5 minutes 
acclimation time, 30 minutes toluene exposure and ~ 8 minutes preparation before 
FSCV measurements. B) Effect of acute toluene exposure on electrically evoked DA 
release across the three striatal brain regions. C) DA uptake rates across the three 
striatal sub-regions following toluene exposure. Data expressed as mean ± SEM. 
Statistical significance was determined by one-way ANOVA with Dunnett’s Multiple 
Comparison Test performed for each brain region (*P < 0.05, **P < 0.01, ***P < 
0.001, n = 4 – 7/group).   
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4.3.3 Effect of acute toluene exposure on presynaptic D3 autoreceptors  

 Dose response curves showing the effect of 7-OH-DPAT on DA release were 

generated from mice exposed to 4000 ppm toluene and their air-control counterparts. 

The toluene dose (4000 ppm) was chosen because of its profound effect on DA release 

across all three sub-anatomical brain regions in the striatum (Figure 4.3). Dose 

response curves obtained in the CPu with 7-OH-DPAT following stable DA signal did 

not differ between air- and toluene-treated mice as shown by the overlap of the two 

curves. The IC50 value is defined as the concentration at which the maximum DA 

response was decreased by 50%. There was no difference between toluene treated 

mice and their air-controls when comparing IC50 values (air: IC50 = 70 ± 1 nM, toluene 

treated: IC50 = 32 ± 1 nM, P =1.00, n = 4-5/group, Student t-test, Figure 4.4A). The 

effect of cumulative doses of the DA D3 agonist was also evaluated on DA uptake 

kinetics between the two treatment groups. One-way ANOVA showed a significant 

effect of 7-OH-DPAT on DA uptake in both groups of mice (air-control: F7,112 = 12.4, P < 

0.0001, Figure 4.4B and toluene exposed: F7,112 = 12.4, P < 0.0001, Figure 4.4C). 

Further statistical analysis of the DA uptake data with Dunnett’s Multiple Comparison 

Tests revealed that perfusion of 0.1 µM 7-OH-DPAT attenuated DA uptake in only air-

control mice.  
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Figure 4.4: Effect of D3 agonist, 7-OH-DPAT on presynaptic DA release and 
uptake in the CPu of toluene exposed and air-control mice.  A) Dose 
response curve showing the effect of cumulative doses (0.001 -10 µM) of 7-OH 
DPAT on DA release in toluene treated mice (IC50 = 32 ± 1 nM) and their air-
controls (IC50 = 70 ± 1 nM). Statistical analysis was done with Student’s t-test. B) 
The effect of 7-OH-DPAT on DA uptake in air-control mice, and C) in toluene 
exposed mice expressed as Vmax (µM/s). Data was plotted as mean ± SEM. 
Statistical analysis performed with one-way ANOVA with Dunnett’s Multiple 
Comparison Test. *P > 0.05, ***P > 0.001, n = 4-5/group).  
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4.3.4 Monitoring the effect of acute toluene exposure on locomotor behavior and 

extracellular dopamine levels in the CPu 

 The main advantage of monitoring locomotor behavior simultaneously with 

dialysate sample collection is that it will enable us to better understand how the 

behavior effects of toluene relate to alterations in the extracellular DA levels. In this 

experiment, the average distance traveled by mice during 5 main phases of 

microdialysis experiments were examined. These phases were 2 hours of baseline, 30 

minutes toluene/air exposure, 1 hour recovery, 15 minutes high K+ aCSF infusion, and 1 

hour post-high K+ aCSF infusion. To be able to compare the locomotor activities of each 

phase to the other and also be consistent with dialysis collection time, the data obtained 

have been expressed as average distance traveled per minute over the time course of 

15 minutes. Statistical analysis of the results (Figure 4.5) using repeated measures 

analysis showed significant within-subject effect of time (F3,25 = 6.96, P = 0.002) and a 

significant Time x Toluene interaction (F3,25= 3.18, P = 0.04) from pre-toluene/air to 

recovery. These observations demonstrate that the locomotor activity of the mice was 

altered during the experiment and that the alteration was dependent on toluene 

treatment. Further statistical analysis using Student t-test revealed a significant increase 

in locomotor behavior during the second half (T2) of the exposure to 4000 ppm toluene 

(11.4 ± 3.4 cm/min) relative to their air-controls (1.42 ± 1.42 cm/min, P < 0.05, n = 5). 

Meanwhile, no significant differences in locomotor behavior were found between 

toluene and air-control mice during recovery phase through to post-high K+ phase 

(Figure 4.5).  
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Figure 4.5: Effect of acute toluene exposure on locomotor behavior during 
dialysate sample collection. Locomotor activity was expressed in 15 minutes 
bins.T1-T2 represent the 30 minutes of toluene/air exposure; R1-R4 constitute the 
1 hour recovery phase; K0 is 15 minutes of hight K+ aCSF infusion; and K1-K4 
denote post high K+ aCSF perfusion. Data compares locomotor activity of 4000 
ppm toluene exposed mice to their air-controls. Statistical analysis was performed 
with repeated measures ANOVA with toluene as the between subjects factor, and 
15-minute time blocks as the within-subject factor. T1 and T2 in toluene and air-
control mice were compared respectively using a Student t-test (*P < 0.05, n = 5-
6). 
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 The microdialysis set-up allowed sampling and further detection of extracellular 

DA levels using HPLC coupled to an electrochemical detector. Dialysis samples were 

collected every 15 minutes across the five experimental phases to examine the 

extracellular DA levels before, during, and after acute toluene exposure. The effect of 

acute toluene exposure on chemically stimulated DA release was measured using high 

K+ concentration aCSF infusion method. The presence of high K+ stimulates 

neurotransmitter release leading to increased extracellular levels of neurotransmitters 

like DA which can be measured by microdialysis. The extracellular DA levels collected 

during the 5 phases of the experiment are expressed as percentage of the baseline DA 

concentration in toluene exposed and air-control mice, respectively. These percentages 

were plotted against time in 15 minute bins. There was no effect from 4000 ppm toluene 

exposure on extracellular DA levels during or after toluene exposure. On the contrary, 

statistical analysis using a Student t-test (two tailed) showed that infusion of high K+ 

aCSF caused a significant increase in extracellular DA level in mice that were exposed 

to toluene compared to their air-control counterpart (t = 2.43, P < 0.05, df = 9, Figure 

4.6). This alteration in chemically stimulated DA release is congruent with what was 

observed using electrical stimulation in slice FSCV.  

 

 

 

 

 

 



www.manaraa.com

89 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6: Effect of acute toluene exposure on extracellular DA levels. Dialysis 
sample collection was made every 15 minutes before (baseline), during (toluene/air), 
and after toluene inhalation. There was no effect of toluene exposure on extracellular 
DA levels in the CPu. However, prior toluene exposure to 4000 ppm alters high K+-
stimulated DA release (dashed red arrows). *P < 0.05, n = 5-6 (paired Student t-test). 
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4.3.5 Effect of acute toluene exposure on extracellular DA and catabolism 

 To determine if intracellular DA and it catabolism are direct targets of toluene’s 

neural action in the CPu and NAc, tissue content of DA and its metabolites (DOPAC, 

HVA, and 3-MT) were measured in brain tissues obtained from mice acutely exposed to 

4000 ppm toluene and their air-controls. Representative retention times for these 

analytes were 6.5, 8.3, 15.0 and 18.0 minutes for DOPAC, DA, HVA, and 3-MT, 

respectively (Figure 4.7). The tissue concentration of DA and its metabolites were 

analyzed against their respective standards and expressed as ng per µg of brain tissue 

protein. The DA tissue content and its metabolites measured from air-control mice were 

compared to that of the toluene exposed mice (Figure 4.8B and C). In the CPu, 

statistical comparison using a Student t-test showed no significant difference in DA 

tissue levels between the two groups of mice (air-control: 877 ± 105 ng/mg protein; 

toluene exposed mice: 1086 ± 72 ng/mg protein; t = 1.64, P > 0.05, df = 22). However, 

in the CPu, there was a significant reduction of DOPAC in toluene exposed mice 

compared to the air-control mice (air-control: 371 ± 44 ng/mg protein, toluene: 221 ± 17, 

t = 3.20, P < 0.01, df = 22, two tailed Student t-test). Meanwhile, the metabolites HVA 

and 3-MT levels in the CPu were not different between the air and toluene-exposed 

mice (P > 0.05). Similarly, there was a significant reduction in only DOPAC, but not DA, 

HVA or 3-MT, levels in the NAc following acute toluene exposure (DOPAC; air-control: 

481 ± 76 ng/mg protein, toluene: 234 ± 30 ng/mg protein, t = 3.03, P < 0.05, df = 10, two 

tailed Student t-test). The interaction between DA and DOPAC was evaluated. The ratio 

of DA/DOPAC was significantly higher in the CPu of toluene exposed mice compared to  

the air-control littermates (air-control: 2.3 ± 0.2, toluene exposed: 5.1 ± 0.4, t = 6.78, P < 
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0.0001, df = 22, two tailed Student t-test) and in the NAc (air-control: 1.1 ± 0.03, toluene 

exposed: 2.2 ± 0.2, t = 4.55, P < 0.01, n = 6, two tailed Student t-test). Collectively, 

these observations suggest that acute toluene exposure influences DA catabolism, 

particularly the conversion of DA to DOPAC in the CPu and the NAc. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

92 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7: Representative chromatograms for neurotransmitters and 
metabolites. A) Chromatogram of standard solution containing norepinephrine 
(NE) , DOPAC, DA, 5-HIAA (5-hydroxyindoleacetic acid), HVA, and 3-MT run at 
2 µA attenuation. B) Chromatogram of brain tissue sample run at 1 µA 
attenuation showing DA and DOPAC peaks. C) Chromatogram of brain tissue 
sample run at 20 nA attenuation showing peaks including 5-HIAA, HVA, 3-MT. 
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Figure 4.8: Effect of acute toluene exposure on tissue content DA and its 
metabolites. A-B) Average concentrations of DA, DOPAC, HVA, and 3-MT from 
CPu and NAc of mice previously exposed to 4000 ppm toluene vapor compared to 
their air-control littermates. C) Effect of acute toluene exposure on DA catabolism 
expressed as DA/DOPAC ratio for CPu and NAc. Data shown as mean ± SEM. 
Statistical significance determined using two tailed Student t-test (*P < 0.05, **P < 
0.01, ***P < 0.001, n = 6). 
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4.4 Discussion 

Previously, we have shown that acute toluene inhalation influences striatal DA by 

increasing DA release, but exerts no effect on DA uptake kinetics (Chapter 3). Our initial 

study suggested potential neural targets for toluene’s action, which we decide to further 

examine in the present chapter. In the previous study, mice were allowed a 30-minute 

recovery period followed by another 15 minutes needed to obtain the brain slices; one 

of the concerns with this approach was that the 30-minute withdrawal period could be 

contributing to the changes observed in DA release. Therefore, the toluene treatment 

was modified to exclude the recovery phase so that FSCV measurements were made 

following toluene exposure (< 10 minutes). Consistent with previous findings (Chapter 

3), the present data confirm that acute toluene inhalation potentiates DA release across 

the striatum of mouse brain. Since similar observations were made after the recovery 

phase of the toluene treatment in the earlier study (Chapter 3), collectively, our data 

suggest that acute toluene inhalation elevates stimulated DA release for at least 30 

minutes after toluene exposure. Evidence about the persistent nature of alterations in 

the DA system induced by acute toluene exposure was demonstrated by Beckley et al. 

in their recent work where retrograde labeling and slice electrophysiology were used to 

examine the acute effect of toluene inhalation on the mesolimbic DA system.201 They 

found that acute exposure of rats to 5700 ppm toluene increased excitatory synaptic 

strength of DA projections in the NAc with elevations persisting for up to 3 and 21 days 

in the NAc core and shell, respectively.201 Our previous acute FSCV data (Chapter 3) 

compared with our present FSCV observation (Figure 4.3) further support the 

hypothesis that toluene induces long lasting alterations in the DA system.84  
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In the experiments presented in this chapter, mice exposed to 2000 ppm toluene 

without a recovery period, showed increase in both DA release and uptake dynamics 

only in the NAc shell. The sub-anatomical brain regions in the striatum differ in both 

their anatomy182, 202-205 and function.206-208 Within the NAc, the core is implicated in 

locomotor stimulatory effects of drugs, whereas the shell is noted for its involvement in 

emotions and motivation.202, 203 From our FSCV data, inhalation of 2000 ppm toluene 

vapor altered both DA release and uptake in only the NAc shell, while a higher 

concentration (4000 ppm) potentiated DA release across all three sub-anatomical 

regions of the striatum but had no effect on DA uptake. Taken together, these FSCV 

data imply that toluene’s action across the striatum may be dose and region dependent. 

A similar specificity was reported in the work done by Di Chiara and colleagues, where 

they demonstrated that intravenous injection of 1 mg/kg of cocaine increased 

extracellular DA levels in both the NAc core and shell, while a lower dose (0.5 mg/kg) 

selectively increased extracellular DA levels in the shell.207 This kind of specificity is also 

consistent with the action of amphetamine and morphine on the DA system in the 

NAc.207 Thus, from our FSCV results, it is likely that toluene may share similar neural 

sites(s) with other drugs of abuse.82 

 A common characteristic amongst drugs of abuse is that they elevate 

extracellular DA levels,177 which is achieved by increasing DA neuronal firing (e.g. 

nicotine and opiate), inducing DA release from the DA terminal (e.g. amphetamine) or 

blocking DA uptake (e.g.cocaine).31, 193 Using slice FSCV, our results demonstrate that 

acute inhalation of toluene increases striatal DA release; therefore, it is logical to expect 

the increase in DA release to lead to an increase in extracellular DA levels across the 
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CPu. However, our microdialysis results showed no difference in extracellular DA levels 

in the CPu during toluene inhalation, although locomotor activity was elevated over the 

same time period (Figure 4.5). These microdialysis results appear contrary to the work 

reported by Stengard et al., where exposure to 1000 or 2000 ppm toluene vapor for two 

hours increased motor activity and extracellular DA levels in the striatum by 47% in 

rats.143 However, when toluene was administered (800 mg/kg) intraperitoneally, motor 

activity was potentiated in rats, but extracellular levels of DA and its metabolites in the 

striatum were not altered.209 These discrepancies in microdialysis results can be 

attributed to differences in the animal model being used (rat versus mouse), dose (high 

versus low), duration of treatment (brief versus extended), and the mode of toluene 

administration (injection versus inhalation). The toluene exposure model used in the 

present work was selected because it mimics brief and high doses of toluene that are 

thought to be observed by those who ‘huff’ in real life. Since acute toluene inhalation 

elicited similar effects across the CPu and the NAc, the CPu was chosen to examine the 

effect of acute toluene exposure on extracellular DA levels because it is a DA rich 

region in the striatum. By measuring locomotor activity and extracellular DA levels 

simultaneously, it was hoped that a correlation or a direct relationship would be 

observed between extracellular DA levels and locomotor behavior. Because there was 

no correlation between toluene induced locomotor activity and extracellular DA levels in 

the CPu, we believe that DA neurotransmission in the CPu may not be directly involved 

in locomotor stimulatory effects induced by acute toluene inhalation. Another possibility 

could be that toluene is directly influencing post-synaptic DA receptors or other 
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receptors through a mechanism that does not increase extracellular DA levels in the 

CPu as suggested by Kondo et al. 209 

To better understand if DA release mechanisms were altered after toluene 

inhalation, aCSF containing high K+ concentration (60 mM) was infused directly through 

the microdialysis probe for 15 minutes. The presence of high K+ causes depolarization 

of neurons and exocytosis, such that neurotransmitters are released into the synapse 

causing elevation in extracellular levels of neurotransmitters which can be measured by 

microdialysis. This procedure has been widely used in microdialysis experiments to 

probe the influence of drug treatment or gene alteration on DA release.94, 126, 210 From 

our microdialysis data, the infusion of high K+ aCSF led to a greater DA response in 

toluene exposed mice compared to their air-controls, confirming that acute toluene 

exposure elevates presynaptic DA release in the CPu,  just as we observed with FSCV.  

Hypothesis that has been put forth by numerous groups is that toluene induces 

DA release in the striatum could be mediated by presynaptic DA autoreceptors. In the 

present work, we asserted that this release could be mediated by presynaptic DA 

autoreceptors, possibly D3 mechanisms. To test this DA D3 autoreceptor hypothesis, 

slice FSCV was used to evaluate the DA D3 receptor in the CPu. When a cumulative 

dose response curve of DA D3 agonist, 7-OH-DPAT was obtained by perfusion of the 

agonist over the CPu, there was no difference in the IC50 values between the control 

and toluene-treated mice suggesting that there is no difference in the function or the 

sensitivity of the DA D3 receptors in the striatum. Thus, although slice FSCV data 

suggest that DA release is elevated in toluene treated mice, it does not appear to be 

mediated via the DA D3 receptors. This FSCV data does not rule out the possible 
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involvement of D2 autoreceptors in toluene’s action. However, considering that acute 

toluene inhalation did not alter DA uptake or extracellular DA levels in the CPu, it is 

possible that the toluene induced elevation may not be mediated by DA autoreceptors.  

 Since DA release was altered in both slice FSCV and microdialysis experiments, 

it is possible that this alteration in DA release is due to the fact that there is more 

intracellular DA available for release. Examining brain tissue content, we could evaluate 

intracellular DA levels as well as its metabolites. Tissue content results from this study 

highlight that acute toluene inhalation had no effect on intracellular levels of DA, HVA, 

and 3-MT in both the CPu and the NAc. However, the intracellular concentration of 

DOPAC was decreased in both the CPu and NAc. The DA/DOPAC ratio was increased 

in the toluene exposed mice suggesting that the breakdown of DA into DOPAC is 

decreased in toluene-treated mice.  

 Collectively, since our data demonstrate that acute toluene inhalation alters 

presynaptic DA release but not DA uptake, D3 autoreceptors, extracellular DA levels, 

and DA synthesis in the CPu, it is most likely that some other neurotransmitter system 

such as glutamate or gamma-aminobutyric acid (GABA) that can influence presynaptic 

DA release could be mediating acute toluene’s action on the DA system in the 

striatum.37   

 4.5 Conclusions 

 In summary, the present data show that acute toluene exposure increases 

stimulated DA release across the striatum. However, this increase in is not mediated by 

presynaptic DA D3 autoreceptors. Although stimulated DA release is elevated after 

acute toluene exposure, extracellular DA levels remain unchanged during toluene 
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inhalation. Despite no changes in extracellular DA levels in the CPu during toluene 

inhalation, locomotor activity was enhanced. Finally, intracellular DA levels were 

unaltered suggesting that the increase in stimulated DA release is not a result of excess 

DA accumulation in vesicles. The tissue content results do suggest that there are 

alterations in DA catabolism in both the CPu and NAc. Taken together, the results here 

suggest that acute toluene inhalation perturbs DA release in the CPu but most likely via 

an indirect mechanism since intracellular DA and uptake were unaltered after toluene 

inhalation.  
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CHAPTER 5 

 An In-depth Examination of the Effect of Repeated Toluene Exposure 

on Striatal Dopamine  (DA) System 

5.1 Introduction 

 Drug addiction is initiated by repeated drug administration, which leads to 

neuroadaptations in the brain reward pathway including the mesolimbic dopaminergic 

system.176, 177 This suggests that understanding how long term toluene exposure affects 

the striatal DA system could provide clues to the underlining mechanisms of toluene 

abuse. Few reports exist that have shown the effect of chronic toluene exposure on the 

DA system.84, 191, 211 In our initial characterization of the effect of toluene exposure on 

striatal DA dynamics, we showed that daily, intermittent toluene exposure for 7 days 

significantly altered DA release in only the nucleus accumbens (NAc), a region 

implicated in drug addiction2; but not the caudate putamen (CPu, Figure 3.6). One of the 

caveats of our original study was that we waited 24 hrs after the 7th toluene exposure to 

make neurochemical measurements; this delay was because we were trying to 

coordinate an appropriate time for FSCV measurements to be made. However, it was 

noted that neurochemical examination should be made immediately after the final 

exposure to better understand the effects of chronic toluene exposure. The present 

chapter examines the alterations that repeated toluene exposure induces immediately 

on the striatal DA system, particularly, the accumbal DA system, since our initial study 

highlighted that this region had the greatest alterations in DA dynamics. Based on our 

observations from Chapters 3 and 4, we hypothesized that, daily, intermittent toluene 

exposure for 7 days would dose-dependently decrease DA release in the NAc as a 
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result of compensatory response to chronic toluene inhalation. Furthermore, we expect 

an increase in the extracellular DA level in the NAc and a decrease in DA tissue content 

and it catabolism. 

  To determine if our hypothesis is valid, we will use slice fast scan cyclic 

voltammetry (FSCV) to evaluate the possible role of DA autoreceptors in the proposed 

compensatory response of the accumbal DA dynamics to chronic toluene exposure. We 

will also evaluate baseline extracellular DA levels in the NAc after daily, intermittent 

toluene exposure. To date there are no reports that have used this exact protocol to 

measure extracellular DA levels. We believe that our model closely mimics the brief but 

repeated toluene inhalation observed in toluene addiction. In vivo microdialysis will be 

used to measure extracellular DA levels, with simultaneous measurement of locomotor 

activity; this approach will allow us to understand how locomotor activity correlates with 

extracellular DA levels in the NAc. Finally, brain tissues will be analyzed to determine 

the effect of repeated toluene treatment on intracellular DA levels and its metabolites 

(3,4-dihydroxyphenylacetic acid, DOPAC; homovanillic acid, HVA; and 3-

methoxytyramine, 3-MT). We expect tissue content analysis to shed light on toluene’s 

influence on DA catabolism. Previous work by another group has shown that the region 

of the putamen in rats has decreased DA catabolism after sub-chronic exposure to 40 

ppm toluene, an effect the authors attributed to decreased DA degradation as the 

DA/DOPAC ration was elevated.212 By examining DA dynamics using slice voltammetry, 

in vivo microdialysis, and tissue content analysis, we anticipate developing a more 

comprehensive understanding about the impact toluene inhalation has on the striatal 

DA system.  
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5.2 Materials and Methods 

5.2.1 Toluene exposure and locomotor activity measurements 

 Repeated toluene exposures before voltammetry and tissue content analysis 

were done using the same procedure described in section 2.3, where mice were 

allowed 5 minutes of acclimation, followed by 30 minutes of exposure to 0 (air-control), 

2000, or 4000 ppm and then 30 minutes recovery. This toluene exposure procedure 

was performed each day for seven consecutive days. On day 7 the recovery phase was 

excluded and mice were sacrificed immediately after the 30 minutes of air/toluene 

exposure. Locomotor activity data were obtained during the acclimation, exposure and 

recovery phases (except day 7) of the procedure. 

5.2.2 Slice fast scan cyclic voltammetry following repeated toluene exposure 

 After the 7th toluene exposure, mice were immediately sacrificed (no recovery 

phase) and their brains were prepared for slice FSCV measurements using the 

procedure discussed in section 2.5. To determine if repeated toluene exposure can 

influence presynaptic DA autoreceptors, DA dynamics in the NAc core were evaluated 

using a cumulative dose response curve of 7-OH-DPAT (1, 10, 30, 100 nM). FSCV 

measurements and analyses were performed using the procedure previously described 

in section 4.2.2.  

5.2.3 Brain tissue content analysis of DA and its metabolites 

 After the 7th exposure to toluene/air, mice were sacrifice by cervical dislocation 

and their brains were rapidly removed, prepared, and analyzed for DA tissue content 

and its metabolites using the same procedure discussed in section 2.8. 
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5.2.4 In vivo microdialysis and locomotor activity measurement  

 Simultaneous in vivo microdialysis and locomotor activity measurements were 

made as described in section 2.6. The timeline for the repeated toluene/air exposure 

and microdialysis measurements is as shown in Figure 5.1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1: Timeline for repeated toluene/air exposure and microdialysis 
measurements. 
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5.2.5 Data analysis 

 Statistical analyses of data from locomotor activity measurements were 

performed with SPSS software using repeated measures analysis of variance (ANOVA) 

where toluene treatment (0, 2000, and 4000 ppm) was represented as the between 

subjects factor, with days and 3-minute time blocks as the within-subjects factors. 

Statistical significance was determined using Tukey’s post hoc contrasts, simple main 

effects analyses, Dunnett’s Multiple Comparison Test or Student t-test. Statistical 

analyses of FSCV and tissue content data were performed with GraphPad Prism 

Software using one-way ANOVA followed by Dunnett’s Multiple Comparison Test or 

Student t-test. Data was expressed as mean ± standard error of the mean (SEM) and 

statistical significance determined as P < 0.05. 

5.3 Results  

5.3.1 Distance traveled during and following repeated toluene exposure 

 The effect of repeated toluene exposure on locomotor behavior was monitored 

within and across days of exposure. Statistical analyses of the results were performed 

using 3 x 7 x 10 repeated measures ANOVA with toluene treatment (0, 2000, and 4000 

ppm) as the between subjects factor with days and 3-minute time blocks as the within-

subjects factors revealed trends similar to those already established in Chapter 3 

(Figure 3.5). However, some of these trends did not reach statistical significance 

presumably due to low statistical power. The specific results from this chapter 

demonstrate that the main effect of toluene treatment did not reach statistical 

significance (F2,14 = 0.94, P = 0.42). There was also no effect of Day (F6,84 = 1.97 , P = 

0.08) and Day x Toluene treatment interaction (F12,84 = 3.10, P = 0.70). However, there 
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was a significant main effect of time (F9,126 = 0.75, P = 0.002) and a marginal Time x 

Toluene treatment interaction (F18,126 = 1.67, P = 0.05). In all, the total distance traveled 

during 4000 ppm toluene treatment increased across days of treatment (P < 0.05; 

Dunnett’s Multiple Comparison Test) as seen in Figure 5.2F. Recovery from repeated 

toluene treatment produced no main effect of Dose (F2,14 = 2.80, P = 0.10) or Day (F5,70 

= 1.59, P = 0.18). However, there was a marginal effect of Day x Toluene treatment 

interaction (F10,70 = 1.94, P = 0.05). Particularly for 4000 ppm toluene treatment, 

locomotor activity during recovery decreased across days of treatment. Dunnett’s 

Multiple Comparison Test of the total distance traveled during recovery revealed a 

significant decrease in locomotor activity across days (P < 0.05, Figure 5.3F). 

Furthermore, a significant main effect was observed for Time block (F9,126 = 20.6 , P < 

0.001) and for the Time block x Toluene treatment interaction(F18, 126 = 5.52, P < 0.001) 

suggesting that the progressive decrease in locomotor activity during the recovery 

period was dependent  on toluene treatment.  
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Figure 5.2: Locomotor activity during and after repeated toluene (0, 2000 or 4000 
ppm) exposure. The left graphs represent locomotory activity, with the first 5 min 
acclimation, the middle section represents 30 minutes toluene exposure, and the right 
section shows 30 min post toluene exposure. A) A plot of distance traveled (cm ± SEM) 
versus time (3 minute bin) for air-control. B) A summation of distance traveled (cm ± 
SEM) versus days of toluene exposure. C) Distance traveled (cm ± SEM) versus time 
(3 minute bin) for 2000 ppm toluene treatment with corresponding D) A summation plot 
of distance versus day. E) A plot of distance traveled (cm ± SEM) versus time (3 minute 
bin) and F) A summation of distance versus day plot for repeated 4000 ppm toluene 
treatment. For all graphs, days 1, 3, and 6 were selected for simplicity. Statistical 
significant main effects and interactions were determined by Tukey’s post hoc contrasts 
and simple main effects analyses. Significance between total distance traveled across 
days was also examined using Dunnett’s Multiple comparison Test. *P < 0.05 (air-
control, n = 10; 2000 ppm, n = 5; 4000 ppm, n = 6). 
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5.3.2 DA release and uptake following repeated toluene exposure 

 Electrically stimulated DA release and uptake were measured across the CPu, 

NAc core, and NAc shell following the 7th toluene/air exposure (no recovery). The 

results obtained were expressed as maximum stimulated DA release in µM and DA 

uptake as maximum velocity of the DA transporter (Vmax) in µM/s. Statistical analysis of 

these data (Figure 5.3) using one way-ANOVA across each brain region showed no 

significant main effect of repeated toluene exposure on DA release in the CPu (F2,42 = 

0.94, P = 0.40), which is consistent with previous observations (Figure 3.6C) where 

FSCV measurements were made 24 hours after the last toluene exposure. In the NAc, 

there was a significant main effect of repeated toluene exposure on DA release (F2,72 = 

10.64, P < 0.0001). Dunnett’s Multiple Comparison tests revealed that both repeated 

exposures to 2000 and 4000 ppm toluene significantly decreased DA release in the NAc 

core (air: 0.79 ± 0.08 µM; 2000 ppm: 0.47 ± 0.04 µM; 4000 ppm: 0.50 ± 0.03 µM; P < 

0.001). However, there was no main effect of repeated toluene exposure on DA release 

in the shell (air: 0.67 ± 0.04 µM; 2000 ppm: 0.53 ± 0.04 µM; 4000 ppm: 0.60 ± 0.08 µM; 

F2,36 = 0.86, P = 0.43). These NAc core DA release results parallel the results obtained 

after a 24 hour recovery period. Taken together these results highlight that toluene has 

a significant impact on DA release in the core and that this alteration can still persist 24 

hours after the toluene exposure.   

With respect to DA uptake in the CPu, there was no difference between toluene-

treated mice and their air-controls (air: 4.37 ± 0.11 µM/s; 2000 ppm: 4.67 ± 0.37 µM/s; 

4000 ppm: 4.19 ± 0.11 µM/s; F2,42 = 0.86, P = 0.44). There was a significant main effect 

of repeated toluene exposure on DA uptake in both the NAc core (F2,72 = 8.37, P < 
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0.001) and NAc shell (F2,36 = 6.43, P = 0.004). In the NAc core, only repeated exposures 

to 2000 ppm toluene decreased DA uptake (air: 2.37 ± 0.13 µM/s; 2000 ppm: 1.50 ± 

0.21 µM/s; 4000 ppm; 2.19 ± 0.12 µM/s; P < 0.001), while in the NAc shell only 4000 

ppm toluene increased DA uptake (air: 1.63 ± 0.23 µM/s; 2000 ppm: 1.63 ± 0.20 µM/s; 

4000 ppm; 2.57 ± 0.20 µM/s; P < 0.001). These uptake alterations in the NAc induced 

by repeated exposure to 2000 and 4000 ppm are in contrast to our previous results 

where a 24 hour wait period after the last toluene inhalation (2000 and 4000 ppm) had 

no effect on DA uptake across all the striatal brain regions (Figure 3.6D). Collectively, 

the present FSCV data show that the DA dynamics in the NAc is prone to the neural 

action of repeated toluene exposure, which could be dose and region dependent.  
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Figure 5.3: Effect of repeated toluene exposure on DA release and uptake. 
A) Repeated toluene exposure and FSCV experimental timeline which includes 
5 minutes acclimation, 30 minutes toluene exposure, and 30 minutes of 
recovery performed every day for 6 consecutive days. The 7th day procedure 
excluded the recovery phase and involved ~ 8 minutes preparation before 
FSCV measurements. B) Effect of repeated toluene exposure on electrically 
evoked DA release across 3 sub-anatomical brain regions of the striatum (CPu, 
NAc core and shell) with their accompanying cyclic voltammogram indicating 
the detection of DA. C) DA release in the CPu, NAc core, and shell. D) DA 
uptake in the CPu, NAc core, and shell. Data expressed as mean ± SEM. 
Statistical significance was determined by one-way ANOVA with Dunnett’s 
Multiple Comparison Test performed for each brain region (**P < 0.01, ***P < 
0.001, n = 4 – 10/group).   
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5.3.3 Effect of repeated toluene exposure on presynaptic DA autoreceptors 

 There is considerable evidence that toluene may regulate DA release through DA 

autoreceptors. The objective of this experiment was to determine if the DA D3 agonist 

7-OH-DPAT would have a shift in its dose response curve; either to the left or to the 

right after toluene inhalation. The agonist 7-OH-DPAT is a potent agonist of DA D3 

receptors but has also been reported to activate D2 receptors in native tissue where 

sodium and magnesium ions are present (Ki values are D3: ~ 1 nM, and D2: 10 nM; 

from Tocris on-line catalog).181, 198, 199, 213, 214 The NAc core was chosen as the target 

brain region because the DA release and uptake parameters in this region were 

significantly altered during repeated toluene exposure (Figure 5.3). However, the 7-OH-

DPAT dose response curves did not significantly differ between toluene exposed 

animals and their air-controls. The IC50 values which describe the concentration at 

which the agonist exerts its half maximum effect, were also not significantly different 

between the toluene exposed mice and their air controls (air: IC50 = 18 ± 1 nM, toluene 

treated: IC50 = 20 ± 1 nM, P =1.00, n = 4 – 5/group, two tailed Student t-test, Figure 

5.4A). However, increasing concentrations of 7-OH-DPAT (≥ 30 nM) decreased DA 

uptake in only the air-control mice (F4,70 = 12.00, P < 0.0001) and not their toluene 

exposed littermates (F = 1.06, P = 0.386).  
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Figure 5.4: Effect of 7-OH-DPAT on presynaptic DA release and uptake in the 
NAc core of toluene exposed and air-control mice. A) Dose response curve 
showing the effect of cumulative doses (1-100 nM) of 7-OH DPAT on DA release in 
toluene treated mice (IC50 = 20 ± 1 nM) and their air-control (IC50 = 18 ± 1 nM). 
Statistical analysis was done with two tailed Student t-test (P > 0.05). B) The effect 
of 7-OH-DPAT on DA uptake in air-control mice, and C) The effect of 7-OH-DPAT on 
DA uptake in mice repeatedly exposed to 4000 ppm toluene vapor. Data were 
plotted as mean ± SEM. Statistical analysis performed with one-way ANOVA with 
Dunnett’s Multiple Comparison Test. ***P > 0.001, n = 4-5/group).  
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5.3.4 Simultaneous monitoring of the effect of repeated toluene exposure on 

locomotor behavior and extracellular DA level 

 Following recovery from stereotaxic surgery, mice were exposed to behavior 

activating dose of toluene (4000 ppm) for six consecutive days in a static exposure 

chamber. On the 7th day, mice were exposed to the same dose of toluene vapor in a 

dynamic chamber fitted with a microdialysis set-up and the effect of toluene inhalation 

on locomotor activity and extracellular DA levels were monitored simultaneously. 

 The activity data for the six days toluene exposure procedure was analyzed 

using 3 x 6 x 10 repeated measures ANOVA with toluene treatment (0 and 4000 ppm) 

as the between subjects factor with days and 3-minute time blocks as the within-

subjects factors. The results obtained revealed there was no main effect of the toluene 

treatment (F1.8 = 0.98, P = 0.352). However, there was a significant effect of Day (F5,40 = 

2.99, P = 0.02), but not Day x Toluene treatment interaction (F5,40 = 0.98, P = 0.44) and 

a significant effect of Time (F9,72 = 2.69, P = 0.009), but not Time x Toluene treatment 

interaction (F9,72 = 0.64, P = 0.76). For the activity measurement during the recovery 

phase, there was no main effect of toluene treatment (F1,7 = 0.16, P < 0.70), day (F2,14 = 

0.64, P = 0.55) or Day x Toluene treatment interaction (F2,14 = 1.89, P < 0.19). However, 

there was a significant main effect of Time (F3,22 = 20.0, P < 0.0001) and Time x 

Toluene treatment interaction (F3,22 = 7.78, P = 0.001). In all, the trends that did not 

reach statistical significance could be a result of low statistical power in the repeated 

measures design. Meanwhile, statistical analysis of the total distance traveled during 

toluene exposure across days (using two tailed Student’s t-test) showed a significant 
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effect of the toluene treatment in day 1 (P < 0.05) and day 3 (P < 0.01), but not day 6 (P 

> 0.05; Figure 5.5).  

 The locomotor activity data for day 7 was expressed as a percentage of air-

control baseline and plotted against time in 15 minutes bins. The data were graphed as 

a percentage of control so it would parallel the microdialysis data from baseline to post 

high K+ concentration artificial cerebrospinal fluid (aCSF) infusion, which is also reported 

as a percent control. Statistical analysis was performed using 2 x 11 repeated measures 

ANOVA with toluene treatment (0 and 4000 ppm) designated as the between subjects 

factor, and the 15-minute time blocks as the within-subjects factors. As shown in Figure 

5.6, there was a significant main effect of Time (F2,13 = 4.54, P < 0.04) but not Time x 

Toluene treatment interaction (F2,13 = 2.34, P < 0.14), or main effect of toluene 

treatment (F1,8 = 3.17, P = 0.11). Further analysis of locomotor activity at the first 

recovery point (R1) using two tailed Student t-test showed no difference between the 

activity of toluene exposed and air-control mice during recovery (P > 0.05; Figure 5.6). 
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Figure 5.5: Effect of repeated toluene exposure on locomotor activity of 
mice. Locomotor activity expressed as distance traveled (cm ± SEM) versus days 
of toluene exposure. The data for each day are separated into distance traveled 
during air or toluene exposure and their recovery. Activity data were analyzed 
using repeated measures ANOVA with toluene treatment (0 and 4000 ppm) as the 
between subjects factor, and time and day as the within-subjects factors. 
Significant effect was determined using two tailed Student t-test (*P < 0.05, **P < 
0.01; n = 6 - 7). 
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Figure 5.6: Effect of repeated toluene exposure on locomotor behavior 
during dialysate sample collection. Locomotor activity was expressed in 15 
minutes bins. T1-T2 represents two 15 minute bins, where mice were exposed to 
toluene or air for 30 minutes, R1 - R4 is the 1 hour recovery phase, K0 is 15 
minutes of high K+ aCSF brain infusion, and K1 - K4 represent post high K+ aCSF 

infusion. Distance traveled is expressed as a percentage of that of the air-control 
baseline. Statistical analysis was performed with repeated measures analysis with 
toluene as the between subjects factor, and 15-minute time blocks as within-
subject factor. Statistical significance was determined using two tailed Student t-
test (n = 5). 
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 Microdialysis measurements were made to examine how extracellular DA levels 

in the NAc are altered following repeated exposure to toluene. The NAc was chosen as 

the brain region of interest from our earlier and present slice FSCV results that showed 

a decrease in DA release in the NAc following repeated toluene exposure (Figure 5.3). 

Dialysis samples were collected in 15 minutes fractions from toluene exposed and air-

control mice during 2 hours of baseline (BL), 30 minutes of toluene exposure (T), 1 hour 

of toluene recovery (R), 15 minutes of high K+ (K0), and 1 hour of post high K+ (K). The 

extracellular DA levels are expressed as percentage of air-control baseline plotted with 

time in 15 minute bins. Statistical analysis using 2 x 11 repeated measures ANOVA with 

toluene treatment (0 and 4000 ppm) designated as the between subjects factor, and the 

15-minute time blocks as the within-subjects factors showed a borderline significant 

effect of toluene treatment (F1,5 = 6.37, P = 0.05), a significant main effect of Time (F10,50 

= 4.15, P < 0.0001), and a significant Time x Toluene treatment interaction (F10,50 = 

2.25, P < 0.03). Moreover, Student’s t-test revealed a significant increase in 

extracellular DA levels during the second half of the toluene exposure (T2; P = 0.02) 

and during recovery (R2 and R4; P < 0.01). An approximate 200% increase in percent 

baseline DA levels was seen in toluene treated mice versus the controls, that were at 

baseline (100%). This percent increase in DA after 60 mM K+ aCSF infusion was 

significant in toluene-exposed mice compared to their air-control (K1 and K2, P < 0.05; 

K3, P < 0.01; Figure 5.7). Taken together, repeated toluene exposure altered the 

extracellular DA levels in the NAc during and following repeated toluene exposure. 
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Figure 5.7: Effect of repeated toluene exposure on extracellular DA levels. 
Dialysis sample were collected from the NAc in 15 minute fractions throughout the 
experiment. The experimental time included 2 hours of baseline (15 – 120 min), 
30 minutes of toluene/air exposure (135 – 150 min), 1 hour recovery (165 – 210 
min), 15 minutes of high K+ aCSF infusion (225 min), and 1 hour of post high K+ 
aCSF infusion (240 – 285). Dialysate DA was expressed as a percentage of air-
control baseline versus time in 15 minute block and analyzed using repeated 
measures ANOVA with toluene treatment (0 and 4000 ppm) as the between 
subjects factor, and the 15 minute time blocks as the within-subjects factors. 
Statistical significance was determined using a two tailed Student t-test. *P < 0.05, 
**P < 0.01, n = 5 – 6.  
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5.3.5 Effect of repeated toluene exposure on DA tissue content and its catabolism 

 The present experiment was performed to examine how repeated toluene 

exposure influences intracellular DA levels and its catabolism. Following 7 days of 

exposure to 4000 ppm toluene, brain tissues were taken from the CPu and the NAc and 

analyzed for DA, DOPAC, HVA, and 3-MT. The results obtained were expressed in 

terms of ng DA or metabolite per mg protein. Furthermore, the DA/DOPAC ratio was 

evaluated to determine if DA catabolism is altered in these specific brain regions. 

Statistical analysis using two tailed Student’s t-test showed no difference in intracellular 

DA levels in the CPu (air: 839 ± 136 ng/mg protein; 4000 ppm: 984 ± 126 ng/mg protein; 

t = 0.78, P = 0.44, df: 22) between the two treatment groups, suggesting that repeated 

toluene exposure does not alter intracellular DA levels. There was no difference in the 

intracellular levels of DA  metabolites following repeated exposure to 4000 ppm toluene 

(DOPAC: air; 202 ± 30, 4000 ppm; 168 ± 20, t = 0.97, P = 0.35, df = 22. HVA: air; 60 ± 

8, 4000 ppm; 79 ± 9, t = 1.61, P = 0.12, df = 22. 3-MT: air; 33 ± 5, 4000 ppm; 44 ± 6, t = 

1.45, P = 0.16, all means are expressed as ng/mg protein). Thus, the DA/DOPAC ratio 

was not different between the two groups of mice (air: 4.2 ± 0.7, 4000 ppm: 5.8 ± 0.5, t 

= 1.82, P = 0.08, df = 22, Figure 5.8C). Similar observations were made in the NAc 

(Figure 5.8B and C), demonstrating that repeated toluene exposure did not alter 

intracellular levels of DA or its metabolites in the NAc. 
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Figure 5.8: No difference in intracellular DA levels and its metabolites after 
repeated toluene exposure. A-B) Intracellular levels of DA, DOPAC, HVA, and 3-
MT from the CPu and NAc of mice repeatedly exposed to 4000 ppm toluene vapor 
for 7 days and their air-control littermates. C) Repeated toluene exposure has no 
effect on DA/DOPAC ratio in the CPu and the NAc. Data shown as mean ± SEM. 
Statistical significance determined using two tailed Student t-test (n = 6). 
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5.4 Discussion 

 Repeated toluene administration alters striatal DA neurotransmission leading to 

neuroadaptations that may underlie its compulsive and repetitive use.34, 84, 171, 215 

Nevertheless, the exact neural mechanisms behind these toluene induced 

neuroadaptations are not well understood. The primary goal of the present study was to 

examine how repeated toluene exposure immediately alters DA neurotransmission in 

the NAc and the CPu. Evidence from our initial characterization of the effect of toluene 

inhalation followed by a 24-hour recovery period (Chapter 3) suggested that 7 days of 

repeated inhalation of 2000 or 4000 ppm of toluene impaired DA release in the NAc, but 

not in the CPu. In the present work, neurochemical measurements were made 

immediately after toluene exposure on the 7th day, without recovery period. In this case, 

similar impairment in DA release was observed exclusively in the NAc. Taking our two 

studies together, the results suggest that repeated exposure to toluene exerts a lasting 

effect on DA neurons in the NA, thus implicating the NAc as an important neural site for 

toluene abuse.36, 216 This observation was not surprising because DA in the NAc is 

associated with the abuse liability for most drugs.34, 217, 218 Repeated administration of 

drugs such as amphetamine, cocaine, nicotine, and morphine induced differential 

changes in DA neurotransmission in the core and shell of the NAc.219-221 The present 

work is consistent with these reports; where slice voltammetry displayed decreased DA 

release in the core, but not the shell of the NAc after repeated exposure to 2000 or 4000 

ppm toluene. Meanwhile, 2000 ppm of toluene decreased DA uptake exclusively in the 

NAc core, while 4000 ppm toluene increased DA uptake in the NAc shell. This regional 

specificity of was also identified in the acute toluene study (see Figure 4.3) where acute 
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toluene inhalation potentiated DA uptake only in the NAc shell. Taken together, the 

present observations suggest that repeated inhalation of toluene vapor preferentially 

decreases DA release in the NAc core while increasing DA uptake in the shell.  

 Throughout our numerous studies, a common observation was that DA release 

and uptake were decreased in the NAc core. Therefore, we hypothesized that repeated 

toluene inhalation would increase extracellular DA levels. We believed that elevated 

extracellular DA levels would lead to the compensatory down-regulation of DA release 

and uptake observed with slice FSCV in the core. Using in vivo microdialysis, increases 

in the extracellular DA levels were observed in the NAc during the 7th toluene treatment, 

although there was no difference in extracellular DA levels prior to toluene inhalation, 

which suggests that baseline DA levels are approximately the same between the two 

treatment groups. However, an increase in extracellular DA levels occurred during the 

exposure period and persisted through the 30-min recovery phase. There was also a 

potentiated response in toluene treated animals following high K+ stimulation. With the 

increases in extracellular DA levels as determined by in vivo microdialysis, we 

anticipated that there would be a concomitant increase in locomotor activity since there 

is a strong correlation between drug induced elevations in extracellular DA levels in the 

NAc and heightened behavioral stimulating effects.34, 171, 217 Although increase 

locomotor activity was not observed in the toluene-treated mice, the locomotor activity 

results suggest a trend towards increased locomotor activity in the toluene treated mice. 

However, the locomotor activity results did not reach statistical significance presumably 

because of low statistical power. We also hypothesis that, because the locomotor 

activity was measured in their microdialysis cage modified to record locomotor behavior, 
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this confound could have led to not observing the statistical significance in locomotor 

behavior. Future studies are aimed to address this concern. Although no difference was 

observed in locomotor behavior, our neurochemical measurements did highlight that 

toluene exposure elevated extracellular DA levels during and after the exposure, as well 

as after a high K+ stimulation.  

 The neurochemical results thus far suggest that daily intermittent toluene 

exposure for 7 days increases extracellular DA levels in the NAc, with a concomitant 

decrease in DA release and uptake in the NAc core. Therefore, there is the possibility 

that toluene influences presynaptic DA autoreceptors, which are contributing to the 

significant alterations observed in the dopaminergic system in the NAc. DA 

autoreceptors play an integral role in regulating DA synthesis and release. To determine 

if DA autoreceptors directly mediate the action of repeated toluene inhalation on DA 

dynamics in the NAc; slice FSCV was used to determine the effect of the DA D3 

autoreceptor agonist, 7-OH-DPAT on DA release and uptake. There was no difference 

between the 7-OH-DPAT dose response curves of DA release generated from toluene 

treated and air-control mice, suggesting no involvement of presynaptic DA D3 

autoreceptors in the alterations induced by repeated toluene exposure on DA release in 

the NAc. This observation appears contrary to our hypothesis, where we anticipated 

that the reduction in stimulated DA release observed in the NAc was a compensatory 

down regulation of the DA D3 receptors. However, only DA D3 autoreceptor subtype 

was examined; future studies could evaluate the D2 autoreceptor also found in the NAc 

or examine heteroreceptors such as a GABA or glutamate receptor that may be 

influencing DA release in the NAc.191 Although there was no difference in the 7-OH-
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DPAT dose response curve, a significant decrease in DA uptake was seen between 

toluene exposed mice and their air-controls. The decrease in DA uptake was only 

observed at the highest dose of 7-OH-DPAT, which is consistent with what has been 

shown in other studies suggesting that higher doses of the autoreceptor agonists are 

non-specific and have the ability to either directly or indirectly interact with the DA 

transporter.222  

 To round up the neurochemical investigations with the toluene treated mice, our 

last investigation was to evaluate intracellular DA levels. Since our initial work in this 

study showed an increase in extracellular DA levels and impairment in DA release and 

uptake in the NAc core, a final goal was to determine if toluene has the ability to 

influence intracellular DA levels or its metabolites. However, repeated toluene treatment 

did not influence the intracellular levels of DA and its metabolites in the NAc. 

Furthermore, the DA/DOPAC ratio was also unaffected suggesting there was no 

difference in DA catabolism. It is interesting that daily, intermittent toluene exposure had 

no effect on DA intracellular levels, since our acute studies showed a significant 

increase in intracellular DA catabolism (see Figure 4.8). These current observations 

from the 7 daily, intermittent toluene exposure suggests tolerance to toluene inhalation, 

but only with a sustained amount of toluene exposure. Taken together, the 

neurochemical measurements made with slice FSCV, in vivo microdialysis, and tissue 

content underscore the complexity of toluene’s neural action, which may involve not 

only the DA, but other neurotransmitters and neuromodulators.37, 79, 84, 223, 224 
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5.5 Conclusions 

 In conclusion, the present work demonstrated that repeated exposure to 

locomotor activating dose of toluene preferentially impairs DA release and uptake in the 

NAc core in a dose dependent fashion. The alterations in DA release were not directly 

mediated by DA D3 autoreceptors. Furthermore, repeated exposure to 4000 ppm 

toluene potentiated extracellular DA levels in the NAc, but there was no effect on 

intracellular levels of DA and its metabolites across the striatum. Taken together, we 

have proposed that toluene is most likely influencing the accumbal DA  

system through a heteroreceptor, possibly the GABA or glutamate receptor. 

. 
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CHAPTER 6 

Probing the Ability of Presynaptic Tyrosine Kinase Receptors to 

Regulate Striatal Dopamine (DA) Dynamics  

Adapted and Updated with permission from: 
Apawu, A. K., Maina, F. K., Mathews, T.A., “Probing the ability of presynaptic tyrosine 
kinase receptors to regulate striatal dopamine dynamics” ACS Chem Neurosci., 2013, 

4(5): 895 – 905 
Copyright (c) 2013, American Chemical Society 

6.1 Introduction 

Brain derived neurotrophic factor (BDNF) belongs to a specialized class of 

proteins called neurotrophins that play a vital role in neuronal growth, differentiation, 

synaptic plasticity, and survival of neurons.145-147 Other members of the family include 

nerve growth factor (NGF), neurotrophin-3, (NT-3), and neurotrophin – 4/5 (NT-4/5).2, 15 

These neurotrophins execute their functions by binding to specific isoform of tyrosine 

kinase receptors called tropomyosin-related kinase (Trk) receptors which are TrkA, TrkB 

and TrkC.18, 225 BDNF propagates its effect by specifically binding to TrkB receptors, 

which causes dimerization of the receptors and phosphorylation of its tyrosine residue 

and subsequent activation of kinases.16 These actions lead to activation of a number of 

small signaling proteins such as GRB2, SHC, and SOS that mediate various signaling 

cascades through phosphorylation to regulate neuronal events including cell survival, 

synaptic plasticity, synaptic transmission, and neurotransmitter release.2, 16, 18, 19 

The interaction between BDNF and the DA system is well known. For example, 

the mesencephalic dopaminergic neurons have been shown to express TrkB 

receptors.226 In addition, in vitro data has revealed that BDNF augments survival and 

differentiation of cultured nigral DA neuron whereas chronic infusion of BDNF directly 
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into rat’s brain has been shown to enhance DA release, DA turnover and metabolism, 

DA neuronal activity, and survival.150, 226-228 Moreover, BDNF has been reported to up-

regulate DA transporter activity in striatal synaptosomes of rat brain.149 Existing data 

also shows that BDNF heterozygous (BDNF+/-) mice (with 50% reduction in BDNF 

protein levels) have higher intracellular DA concentrations in the striatum, while 

exhibiting decrease DA release in the striatum.229, 230 BDNF+/- mice have reduced 

expression and function of the DA D3 receptors in the caudate-putamen (CPu) and 

nucleus accumbens (NAc) compared to their wildtype littermates.183, 231 Our laboratory 

has shown that BDNF+/- mice have an ~ 2.5-fold increase in extracellular DA levels in 

the CPu compared to wildtype mice as measured by zero net flux, with fast scan cyclic 

voltammetry (FSCV) data showing a decrease in electrically evoked DA release and 

uptake.232 Our initial neurochemical analysis on CPu DA dynamics suggests that 

endogenous BDNF influences DA system homeostasis primarily by regulating release 

leading to adaptions in the DA uptake function.232 All these data together with many 

more provide overwhelming evidence of the ability of BDNF to modulate DA function 

across different brain regions including the striatum. Nevertheless, the mechanism of 

how BDNF influences the DA function is still not well understood.  

To examine the mechanism underlining the influence of BDNF on presynaptic DA 

release and uptake processes, the experiments herein explores FSCV’s utility to 

characterize the functional effect of Trk receptors on the presynaptic DA release and 

uptake dynamics in the striatum. The functional effect of Trk receptors has been 

examined previously using classic radiochemical methods in synaptosomes and brain 

slices.149, 233, 234 These existing radiochemical methods provide high selectivity to 



www.manaraa.com

127 
 

 
 

examine each of the DA parameters. For example the DA transporter function can be 

studied devoid of contributions from the DA release and diffusion.235 However, the 

strength that FSCV brings to the field would be its high temporal resolution (up to 100 

ms) and ability to assess DA release and uptake rate simultaneously. By using FSCV 

on striatal brain slices, it eliminates contributions from post-synaptic TrkB receptors 

allowing us to better understand how presynaptic TrkB receptors contribute to 

modulating DA dynamics. In the present work, DA release and uptake dynamics have 

been evaluated in the striatum by using the endogenous ligand BDNF, commercially 

available TrkB agonist 7,8-dihydroxyflavone (7,8-DHF), and  inhibitors such as 

genistein, tyrphostin 23 (AG 18), and K252a. Herein, we demonstrate the ability of 

FSCV to assess the effect of non-DA receptors like the TrkB on striatal DA dynamics, 

and will be useful to provide a better understanding of how other systems contribute to 

the strength of synaptic DA transmission.  

6.2 Hypothesis  

 We hypothesize that life-long reduction in BDNF results in compensatory 

alteration in DA release and uptake dynamics, which we believe are being modulated by 

presynaptic TrkB receptor activation. 

6.3 Materials and Methods 

6.3.1 Animals 

 Wildtype and BDNF+/- mice were purchased from Jackson Laboratories (Bar 

Harbor, ME) and offspring were raised as a colony in-house in a certified vivarium 

(Association for Assessment and Accreditation of Laboratory Animal Care; AAALAC) at 
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Wayne State University. Genotype identification was performed using PCR analysis of 

tail DNA as already described by Bosse et al.94  

6.3.2 Chemicals 

 Chemicals used in the preparation of artificial cerebrospinal fluid (aCSF) for 

voltammetric solutions were purchased either from Sigma-Aldrich (St. Louis, MO), 

Fisher Scientific Co. (Fairlawn, NJ), or EMD Chemicals, Inc. (Gibbstown, NJ) unless 

otherwise noted. The following compounds were purchased from specific vendors: 7,8-

DHF from Tokyo Chemical Industry Co. LTD. (Portland, OR), BDNF from PeproTech 

(Rocky Hill, NJ), and K252a from LC Laboratories (A Division of PKC Pharmaceuticals 

Inc., Woburn, MA). In all slice experiments, the pharmacological agents were dissolved 

in ultrapure (18 MΩ cm) water or dimethyl sulfoxide (DMSO), unless otherwise stated 

and then diluted in oxygenated aCSF (composition in mM: 0.4 ascorbic acid, 126 NaCl, 

2.5 KCl, 1.2 MgCl2, 2.4 CaCl2, 25 NaHCO3, 1.2 NaH2PO4, 11 D-glucose, and pH 7.4). All 

chemicals used in calibration experiments, including the verification of the redox 

capability of the drugs, were dissolved in DMSO and then diluted in a modified 

calibration aCSF buffer (composition in mM: 126 NaCl, 2.5 KCl, 1.2 MgCl2, 2.4 CaCl2, 25 

NaHCO3, 1.2 NaH2PO4, and pH 7.4). 
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Figure 6.1: Chemical structures of TrkB receptor agonist and antagonists 
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6.3.3 Slice FSCV 

Mouse brain slices were obtained and voltammetric recordings were made as 

described in Chapter 2.5. Briefly, 400 μm coronal brain slices obtained from BDNF+/- 

and Wildtype mice were stimulated every 5 minutes using a one pulse electrical 

stimulation (monophasic, 350 μA, 60 Hz, and 4 ms pulse width) to elicit DA which was 

measured using a homemade carbon fiber microelectrode (with a length between 50 - 

200 μm and a 7 µm diameter held at initial potential of -0.4 V, ramped up to +1.2 V and 

back to -0.4 V at a scan rate of 400 V/s at 10 Hz). Current generated at the 

microelectrode surface as a result of the redox reaction of DA was subtracted from the 

background current to obtain peak oxidation current for DA. The peak oxidation current 

for DA was converted into concentration based on a post-calibration using 3 µM DA. 

Following three stable DA release profiles (within 10% of each other), the effect of 

cumulative concentrations of pharmacological agents; exogenous BDNF, 7,8-

dihydroxyflavone (7,8-DHF), gensitein, tyrphostin 23 (AG18), K252a, or a single dose of 

BDNF-K252a, or 7,8-DHF- K252a cocktail was evaluated. To verify the redox capability 

of the pharmacological agents, flow injection analysis as described in Chapter 2.5.3 was 

used to measure the response of these pharmacological agents at a carbon fiber 

microelectrode surface. Three different concentrations (3, 10, and 20µM) of each 

pharmacological agent were made by dissolving the respective stock solutions in 20 mL 

of aCSF (calibration buffer) with physiological pH of 7.40. Each concentration was run in 

triplicates during which the microelectrode was held at initial potential of -0.4 V, ramped 

up to 1.2 V and back down to -0.4 V at a scan rate of 400 V/s. 
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6.3.4 Data Analysis 

All voltammetric data were analyzed using LabVIEW National Instruments 

software (National Instruments, Austin, TX). Current versus time traces were fitted to a 

non-linear regression.154, 163 A Michaelis-Menten based kinetic model was used to 

evaluate stimulated presynaptic DA release ([DA]p) and DA uptake kinetics (maximum 

velocity, Vmax) and affinity of DA to its transporter (apparent Km) by fitting DA current 

versus time traces.94, 163 In all voltammetric analysis, Km values were set to 0.16 μM, 

which permits a non-linear fit of DA release and uptake. Statistical analysis was 

performed using GraphPad Prism (GraphPad Software, Inc., San Diego, CA) during 

which statistical significance was determined by one-way ANOVA with Dunnett's 

Multiple Comparison Test. The criterion for the statistical significance of DA analysis 

was set to P < 0.05. All data are reported as mean ± standard errors of the means 

(SEMs). 

6.4 Results and Discussion  

6.4.1 Characterization of the electrochemical properties of 7,8-dihydroxyflavone, 

K252a gensitein, and tyrphostin 23 

The main goal of the experiments described in this section was to examine if the 

pharmacological agents used have electrochemical properties that could directly 

interfere with DA signals instead of their cellular action on the DA system during the 

brain slice drug perfusion experiments. This goal stems from the fact that the structures 

of 7,8-DHF and tyrphostin 23 are similar to that of DA insofar as the molecules contain 

the catechol moiety, Thus, we expected these two molecules to have similar redox 

reaction as that of DA at the electrode surface. Furthermore, although K252a does not 
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contain a catechol moiety, it does have a single hydroxyl group that could be easily 

oxidized like tyramine and octopamine.236 while genistein on the other hand, is a 

polyphenol with three hydroxyl groups (Figure 6.1) which can undergo  electron transfer 

oxidation reaction like quercetin.237 To delineate the electrochemical properties of these 

molecules, we used a flow cell apparatus to evaluate their oxidation and reduction 

potentials. The results obtained have been expressed in terms of background 

subtracted cyclic voltammograms. As expected, 7,8-DHF showed a single oxidation and 

reduction peak at ~ 0.4 V and at -0.2 V respectively (Figure 6.2C). The single oxidation 

and reduction peak for 7,8-DHF suggests that it is a reversible electrochemical reaction. 

It is our hypothesis that the hydroxyl groups on the catechol are oxidized in much the 

same way as it is in DA (Figure 6.2A) and other catecholamine molecules. A notable 

difference in 7,8-DHF and DA cyclic voltammograms is that 7,8-DHF oxidizes at ~ +0.2 

V less than DA. We believe this difference is due to the second ring structure attached 

to the catechol moiety providing additional stability/resonance to the molecule. Similarly, 

the background subtracted voltammograms of tyrphostin 23 showed oxidation and 

reduction peaks at ~ 0.6 and ~ 0.02 V respectively (Figure 6.3C). Interestingly, these 

oxidation-reduction peaks of tyrphostin 23 were suppressed in presence of DA (Figure 

6.3D). K252a gave a very distinct cyclic voltammogram with oxidation peaks at ~ +0.4 

and +1.1 V, and a reduction peak at ~ +0.9 V (Figure 6.2E). When DA and K252a were 

combined, there appeared to be no overlap with oxidation peaks of the two components 

(Figure. 6.2F). Genistein showed three oxidation peaks at 0.2, 0.8 and 1.0 V 

respectively (Figure 6.3A; a-c) which appeared to be irreversible at physiological pH. 

The genistein voltammogram could suggest oxidation of the para-substituted phenol 
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and the resorcinol moiety.238 The DA-genistein mixture showed peaks characteristic of 

the two constituents with DA masking the first peak of gensitein. Taken together, the 

present background subtracted voltammograms demonstrated that each of the drugs 

examined is electrochemically active at pH of 7.40 with most of them exhibiting 

reversible oxidation reactions. However, the DA signals (current) and oxidation potential 

are no different in the presence of these compounds which strongly support the notion 

that background subtraction eliminates any possible electrochemical confounds 

associated with the perfusion of the drugs. This assertion is further supported by the 

voltammograms for the slice FSCV data as no interfering peaks were observed during 

drug perfusion experiments (Figures 6.4-6.5). 
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Figure 6.2: Background subtracted cyclic voltammograms and redox reactions 
showing electrochemical properties of DA, 7,8-dihydroxyflavone and K252a. 
Data was obtained using flow injection analysis of varying concentrations of each 
molecule. A) Oxidation-reduction reactions of DA and 7,8-DHF respectively. Both 
molecules oxidize in a similar electron transfer reaction to form ortho-quinones 
during the forward scan of the applied voltage. In the reverse scan, the quinones are 
reduced back to DA and 7,8-DHF respectively. B) Cyclic voltammogram shows 
oxidation peak of DA at ~ 0.6 V and reduction peak at ~ -0.2 V. C) Cyclic 
voltammogram of 7,8-DHF. Oxidation peak of 7,8-DHF occurs at ~ 0.4 V whereas 
the reduction peak appears at ~ -0.2 V. D) A solution of both DA and 7,8-DHF 
demonstrates the characteristic oxidation peaks of the two compounds only at higher 
concentrations as depicted by their voltammograms. E) Cyclic voltammogram 
showing oxidation and reduction peaks of K252a. F) Cyclic voltammograms showing 
oxidation and reduction of DA-K252a solution. 
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Figure 6.3: Background subtracted cyclic voltammograms showing 
electrochemical properties of genistein and tyrphostin 23. A) Cyclic 
voltammograms of gensitein showed non-reversible three oxidation peaks of the 
compound occurring at 0.2, 0.8 and 1.0 V respectively. B) In dopamine-genistein 
mixture, cyclic voltammograms showed both oxidation-reduction profile of DA 
and two non-reversible oxidation peaks of gensitein. C) tyrphostin 23 oxidizes at 
~ 0.6 and reduces at ~ 0.02 V. D) The voltammogram showed the presence of 
DA suppressed the oxidation property of tyrphostin 23. 
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6.4.2 Effect of exogenous BDNF on electrically evoked DA release in BDNF+/- mice 

Numerous reports suggest that exogenously applied BDNF enhances both DA 

release and uptake.21, 149, 150, 239 To date, no one method has been used to 

simultaneously analyze both release and uptake parameters. To evaluate the functional 

effects of how exogenous BDNF influences presynaptic DA dynamics directly in the 

CPu, electrically evoked DA release (Figure 6.4), and uptake rates (Table 1) were 

monitored every 5 minutes in BDNF+/- mice. Direct application of cumulative 

concentrations of exogenous BDNF (50, 100, and 200 ng/mL) was applied to brain 

slices for 30 minutes. BDNF+/- mice were only evaluated with BDNF perfusion because 

we have previously shown that DA release and uptake rates are not different in wildtype 

mice.94 BDNF+/- mice showed a concentration-dependent increase in electrically 

stimulated DA release after BDNF was applied to striatal brain slices compared to their 

pre-drug controls (50 ng/mL BDNF: ~ 12%, 100 ng/mL BDNF: ~ 17%, and 200 ng/mL 

BDNF: ~ 18%, Figure 6.4A). However, no difference in Vmax was observed after BDNF 

perfusion (Table 1). We have extended and confirmed our previous findings,94 that 

exogenous application of BDNF from 50 to 200 ng/mL elevates evoked-DA release with 

no effect on DA uptake rates in BDNF+/- mice.  
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Figure 6.4: Infusion of BDNF dose dependently increases electrically 
stimulated DA release in the caudate-putamen of BDNF+/- mice. A) Current 
versus time trace of baseline DA signal with corresponding cyclic voltammogram 
(inset) compared to current versus time trace of electrically evoked DA release after 
a 30 minute perfusion of 200 ng/mL BDNF (red line) with corresponding cyclic 
voltammogram (red line, inset). B) Effect of varying concentrations of exogenous 
BDNF on DA release expressed as a percentage of pre-drug DA concentration. 
Data are means ± SEMs (n = 5 mice). One-way ANOVA (F3,36 = 9.42; P < 0.0001, n 
= 5) followed by Dunnett’s post-test revealed that each concentration of BDNF 
increased DA release significantly.  **P < 0.01, ***P < 0.0001. 
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6.4.3 Effect of genistein and tyrphostin 23 (AG 18) on presynaptic DA dynamics 

 To examine the mechanism underlining the influence of BDNF on presynaptic DA 

dynamics, the experiments herein explores FSCV’s utility to characterize the functional 

effect of Trk receptors by measuring the effect of Trk receptor antagonist; genistein and 

tyrphostin 23 on electrically stimulated DA release and uptake in the CPu. Genistein 

and tyrphostin 23 have been extensively studied as potent Trk receptor inhibitors.149, 240-

242 For example, using these two Trk receptor inhibitors, Hoover et al. successfully 

demonstrated that tyrosine kinases modulate the DA transporter function in rat brain 

preparations.149 In the present work, we first obtained stable electrically evoked DA 

signal before perfusion of genistein or tyrphostin 23. The results obtained showed that, 

BDNF+/- mice have significantly lower pre-drug electrically evoked DA release compared 

to their wildtype counterpart (Figure 6.5A versus B, Figure 6.6A versus B, open bars, #P 

< 0.05, Student t-test). Furthermore, the DA uptake in the BDNF+/- mice was lower 

compared to their wildtype littermates (Figure 6.5C versus D, Figure 6.6C versus D, 

open bars, ###P < 0.001, Student t-test). This low stimulated pre-drug DA release and  

uptake is in agreement with earlier work that has suggested that endogenous BDNF 

affects the homeostasis of the DA system by regulating the release and uptake 

processes.94  Following stable DA signal (successive peaks with peak height within 10% 

of each other), cumulative concentrations of genistein (10, 50, and 100 µM) or 

tyrphostin 23 (10, 20, and 50 µM) were perfused on brain slice during which 

measurements were made every 5 minutes and the effect of each dose was monitored 

for 30 minutes. These concentrations of the drugs have been chosen based on 

preliminary experiments. When genistein was applied to the striatal brain slice, no 
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significant alteration in electrically stimulated DA release was observed in wildtype mice 

(P = 0.094, one-way ANOVA; Figure 6.5A) and BDNF+/- mice (P = 0.602; one-way 

ANOVA; Figure 6.5B) compared to their respective pre-drug controls. However, 

perfusing high concentrations of the inhibitor (≥ 50 µM in wildtype mice and 100 µM in 

BDNF+/- mice) decreased DA uptake rate in the two groups of mice. This observation 

suggests that tyrosine kinase receptors are involved in regulating the DA transporter 

function at the presynaptic level. While inhibition of Trk receptors with genistein did not 

seem to alter presynaptic DA release, we suspect that the drug could also be involved 

in other non-tyrosine kinase effects.149, 241, 243-246  To verify that inhibition of Trk 

receptors could alter both presynaptic DA release and uptake dynamics, stimulated DA 

release and uptake in presence of tryphostin 23, a more selective Trk receptor inhibitor 

149 was measured in both wildtype and BDNF+/- mice. The data obtained showed that 

when tyrphostin 23 was applied to the striatal slice, there was a significant decrease in 

electrically stimulated DA release in both genotypes. The uptake rate in the two 

genotypes (Figure 6.6C and D) was also decreased with increasing concentration of 

tyrphostin 23. Altogether, the decrease in stimulated DA release and uptake rate 

observed in the two groups of mice is consistent with our expectation of Trk receptor 

inhibitor and also with earlier report that that has shown that pre-incubation of rat dorsal 

striatal synaptosomes  with tyrphostin 23 reduces specific uptake of radiolabeled DA 

into the synaptosomes in a concentration dependent fashion.149 The present results 

thus, suggest that FSCV is an important tool to tease apart the effect of Trk receptors 

on presynaptic DA release and uptake dynamics. 
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Figure 6.5: Effect of genistein on electrically evoked DA release and uptake in 
the CPu of wildtype (WT) and BDNF+/- mice. Evoked DA release in presence of 
perfused genistein was expressed as percentage of WT baseline for A) WT mice and 
B) BDNF+/- mice. DA uptake rate (Vmax) was attenuated in presence of high 
concentrations of genistein for C) WT mice and D) BDNF+/- mice. **P < 0.01 and ***P < 
0.001 compare to respective pre-drug concentration (one way ANOVA with Dunnette 
Multiple comparison test), ###P < 0.001 versus WT baseline (Student t-test), n = 5-
7/group. 
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Figure 6.6: Effect of tyrphostin 23 (AG 18) on evoked DA release and uptake 
in the CPu of wildtype (WT) and BDNF+/- mice. High concentrations of 
tyrphostin 23 decreased electrically evoked DA release (expressed as percentage 
of WT baseline) in A) WT mice and B) their BDNF+/- littermates.  DA uptake rate 
(as Vmax) was decreased in the presence of high concentrations of the inhibitor in 
C) WT mice D) the mutant mice. ***P < 0.001 compare to respective pre-drug 
concentration (one way ANOVA with Dunnette Multiple comparison test), #P < 
0.05 and ###P < 0.001 versus WT baseline (Student -test), n = 4-5/group. 
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6.4.4 Effect of K252a on presynaptic DA dynamics in wildtype mice 

 BDNF signaling is mediated by the TrkB receptor.2, 247 However, it is unclear 

whether the TrkB receptor activation affects DA release and uptake. To find the answer, 

we used potent Trk receptor inhibitor, K252a.248, 249 K252a was perfused over a brain 

slice for 30 minutes per dose, and its effects were monitored every 5 minutes (Figure 

6.7A). Dunnett’s post-test revealed a significant (P < 0.05) reduction in stimulated DA 

release only at the highest K252a concentration (3 µM). Increasing the concentration of 

K252a from 0.01 to 3 µM reduced Vmax in a concentration-dependent manner (Figure 

6.7B and D).  

Our results from the CPu of wildtype mouse brain slices show that concentrations 

less than 3 µM of K252a alone has no effect on electrically stimulated DA release. 

These results agree with previous studies showing that concentrations of K252a less 

than 1 µM have no effect on stimulated DA release.250, 251 Only the highest 

concentration of K252a applied to brain slices reduced electrically stimulated DA 

release. We cannot rule out the possibility that K252a reduced the amount of stimulated 

DA release by acting at other Trk receptors. Although K252a is used to selectively block 

BDNF-TrkB signaling, it is also a non-specific inhibitor of tyrosine kinase protein activity 

including the TrkA and TrkC receptor sub-types.252 Such actions could contribute to the 

decrease in electrically evoked DA when K252a is applied at the highest concentration.  

This is the first report demonstrating the rapid reduction in DA transporter kinetics 

in the CPu of wildtype mice when K252a concentrations are greater than 0.1 µM and is 

in agreement with the previous work by Hoover et al., where inhibition of tyrosine 

kinases by genistein (a non-specific Trk inhibitor) or tyrphostin 23 (a selective Trk 
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inhibitor) resulted in rapid (5 – 15 minute), dose-dependent decreases in [3H]DA uptake 

rates in a dorsal striatal synaptosomal preparation.149 It may appear inconsistent that 

activation of TrkB with BDNF increases stimulated DA release, while inhibition of this 

receptor reduces DA uptake, but Trk receptors activate multiple signaling pathways. 

Considerable evidence in the literature suggests a divergent role for TrkB where BDNF 

activation increases neurotransmission,94, 233, 239, 251 while Trk inhibitors reduce DA 

uptake.149 The exact mechanism causing this divergent response is unknown, but it is 

hypothesized that inhibition of the Trk receptor blocks autophosphorylation, which 

reduces activity in numerous signaling cascades such as phosphatidylinositol-3 kinase 

(PI3K), mitogen-activated protein kinase (MAPK), and extracellular signal-regulated 

kinase (ERK1/2) reaction pathways, all of which have been linked to decreases in DA 

transporter activity by decreasing Vmax.
149, 253-257 The results of this study suggest that 

inhibition of the TrkB receptor reduces the DA transporter function, but more studies are 

required to determine the specific Trk-signaling pathways that may be involved in 

regulating DA transporter kinetics.  
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Figure 6.7:  Effect of TrkB inhibitor, K252a on stimulated DA release and 
uptake in the CPu of WT mice. A) Representative DA release and uptake after 
a 30 minutes perfusion of 0.03 µM K252a compared to pre-drug DA signal 
shown by their representative current versus times traces with corresponding 
cyclic voltammograms (inset). B) Effect of 3 µM K252a on DA release and 
uptake represented in terms of concentration versus time trace and cyclic 
voltammogram (inset). C) K252a produced a significant effect on stimulated DA 
release as determined by a one-way ANOVA (F5,61 = 3.05; P < 0.05, n = 4-7). A 
Dunnett’s post-hoc test confirmed that only 3 µM K252a perfusion attenuated 
stimulated DA release. D) One-way ANOVA (F4,25 = 14.93; P < 0.0001, n = 4 - 7) 
followed by Dunnett’s post-test revealed that K252a concentrations greater than 
0.01 µM K252a significantly decreased Vmax. Data are means ± SEMs (n = 4 - 7 
mice). *P < 0.05, **P < 0.01, ***P < 0.001. 



www.manaraa.com

145 
 

 
 

6.4.5 K252a inhibits BDNF’s ability to acutely modulate striatal DA release in 

BDNF+/- mice  

To demonstrate that exogenously applied BDNF modulates presynaptic DA 

dynamics via the TrkB receptor electrically evoked DA release, and uptake rates were 

monitored every 5 minutes following direct application of BDNF (100 ng/mL) only, 

K252a (1 μM) only, or pre-treatment with K252a prior to BDNF administration to a slice 

for 30 minutes. In the absence of exogenous applications of BDNF or K252a, electrically 

evoked DA from the CPu of BDNF+/- mice (referred to as ‘baseline’ in Figure 6.8) was 

reduced by ~ 40% compared to their wildtype littermates, which is delineated as the 

dashed line at 100% (Figure 6.8). Exogenous application of BDNF significantly 

potentiated stimulated DA release by ~ 16% in BDNF+/- mice (P < 0.001), while there 

was no difference in that of the wildtype mice. Pretreatment of the striatal BDNF+/- slice 

with K252a abolished this modulatory effect of BDNF, suggesting that the increased DA 

release may be mediated by presynaptic TrkB receptors. There was no difference in 

electrically evoked DA release in wildtype mice in the presence of BDNF, K252a or the 

combination of the two.  

The ability of K252a to block the BDNF-induced increase in DA release in the 

CPu of BDNF+/- mice suggests that the TrkB receptor can mediate DA release. Our 

findings are in agreement with previous results that have shown BDNF-induced 

stimulated DA release is blocked in the presence of K252a.230, 239 An issue with 

examining monoamine output after BDNF infusion is identifying the specific signal 

transduction cascade(s) involved. For example, the acute BDNF-potentiation of DA 

release is suggested to be dependent on PI3 kinase and Ras-MEK activation only.239 
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However, the exact mechanism of how BDNF mediates DA release has remained 

elusive.  

6.4.6 Exogenous BDNF application has no effect on DA dynamics in wildtype 

mice 

 Neurotrophic factors, like BDNF are typicallythought of as promoting long-term  

effects on neurons such as synaptic plasticity, neuronal survival, and differentiation. Our 

results demonstrate that the acute effects of TrkB activation via BDNF leads to a rapid 

increase in DA release in the CPu of BDNF+/- mice, while there is no difference in 

stimulated DA release with BDNF perfusion in our wildtype mice (Figure 6.8C). Previous 

reports using wildtype mice/rats established that acutely, exogenously applied BDNF 

enhances synaptic events such as DA release both in vivo and in vitro.21, 150, 233 We 

hypothesize that this difference in BDNF-induced DA release between our wildtype mice 

and those from previous studies is a result of methodological differences between slices 

and synpatosomes. For example, all synaptosomal preparations required the co-

incubation of BDNF and high K+ artificial cerebral spinal fluid (aCSF) over a time course 

of minutes to observe BDNF-potentiated DA release.21, 150, 233, 239 Furthermore, DA 

release was measured as an accumulation of exogenously applied 3[H]-DA, while our 

wildtype slices received a one-millisecond electrical stimulation that recruited 

endogenous DA. Taken together, an acute perfusion of BDNF can rapidly potentiate DA 

release in a system with low endogenous BDNF levels, but in a normal system, like that 

of wildtype mice, stronger stimulation parameters may be required. 

6.4.7 K252a does not modulate striatal DA transporter kinetics in BDNF+/- mice      

 Studies have also suggested a role for Trk receptors in modulation of DA uptake 
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evidenced by the use of Trk inhibitors, which have been shown to alter DA transporter 

function, expression and/or kinetics.149 An advantage of slice FSCV is that both 

presynaptic DA release and uptake are simultaneously evaluated. The objective was to 

use FSCV to determine if an exogenous application of BDNF influences DA transporter 

kinetics as it does with DA release. Exogenous BDNF applications only potentiate 

evoked DA release with no difference in DA uptake rates in BDNF+/- mice (Figure 6.8D). 

Therefore, we have hypothesized that the 50% reduction in DA transporter function is 

the compensatory response to having a life-long reduction in BDNF levels since this 

parameter was unaltered.94 There was no effect of K252a on DA Vmax in BDNF+/- mice. 

With respect to DA transporter expression in BDNF+/- mice, when the mice are less than 

6 months of age, there is no difference in DA transporter expression or activity.258, 259 

But little research has focused on evaluating whether TrkB inhibition influences DA 

transporter function or expression in BDNF+/- mice. There is no difference in striatal 

TrkB and phosphorylated TrkB (pTrkB) levels between the genotypes.108 However, 

BDNF+/- mice show an increase in the ratio of striatal pTrkB/TrkB with a concomitant 

potentiation in striatal pERK/tERK2 levels.108 In order to better understand if and how 

tyrosine kinase receptors modulate DA transporter expression or activity, future studies 

should evaluate specific intracellular cascades that may mediate the interactions 

between TrkB and the DA transporter.   

6.4.8 K252a modulates striatal DA transporter kinetics in the presence or absence 

of exogenous BDNF in wildtype mice  

 Interestingly, perfusion of K252a in the presence or absence of BDNF 

significantly attenuated DA uptake rates in wildtype mice (analyzed by Dunnett’s post-
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test P < 0.05). These results show that Trk inhibition in wildtype slices has the ability to 

modify/regulate DA transporter kinetics given the reduction seen upon application of 

K252a alone. Although K252a has been shown to have no effect on DA Vmax when 

applied to rat dorsal striatal synpatosomes, the same cannot be said about non-

selective tyrosine kinase inhibitors.149 When the non-selective tyrosine kinase inhibitors 

genistein and tyrphostin-23 were acutely applied, a significant decrease of striatal DA 

transporter surface expression and Vmax were observed, but Km was not different.149  

Western blotting suggested that this mechanism of decreasing DA transporter Vmax and 

surface expression was mediated via MAPK p42 and p44 isoforms as these 

phosphorylated levels were decreased after inhibition.149 The difference between the 

present results and those obtained by Hoover et al. with respect to K252a, could be due 

to the 10-fold less concentration of K252a (10 vs. 1000 nM, respectively) than what we 

used. In the present study, the high concentration of K252a could be non-selectively 

binding to other tyrosine kinase receptors such as the TrkA and TrkC sub-types, which, 

in turn, could be inducing a reduction of striatal DA uptake rates. Furthermore, there are 

numerous methodological differences between our FSCV results and the results 

obtained via the synpatosome preparations that Hoover et al. used. First, there is the 

species difference, rat versus mouse. Second, different methods were used to analyze 

uptake rates and their respective temporal resolution. Slice FSCV measures millisecond 

stimulated endogenous DA to evaluate DA release and uptake rates (Vmax), where Km is 

fixed, while synpatosome preparations require minutes to collect enough DA to analyze 

uptake parameters.  
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Figure 6.8: Effect of exogenous application of BDNF (100 ng/mL) on DA 
release and uptake rates in the CPu of WT and BDNF+/- mice. A) 
Representative current versus times traces with corresponding cyclic 
voltammograms (inset) from BDNF+/- mice before and after BDNF infusion. B) 
K252a blocked the ability of BDNF to potentiate DA release in the CPu of BDNF+/- 
mice as shown in representative current versus times traces with corresponding 
cyclic voltammograms (inset). C) Normalized single pulse, electrically evoked DA 
release represented as % of WT baseline, wildtype mice are represented by the 
dashed line. Two-way ANOVA of electrically stimulated DA release in response to 
drug application showed a main effect of treatment (F3,74 = 10.37, P < 0.001), 
genotype (F1,74 = 216.9, P < 0.001), while there was no treatment X genotype 
interaction (F3,74= 2.612, P = 0.056). D) DA uptake rates in WT and BDNF+/- mice 
before and after 30 minute perfusion of either 100 ng/mL BDNF, 1 µM K252a, or 
both in the caudate putamen. A two-way ANOVA evaluating DA uptake kinetics 
indicated there was no difference in the main effect of treatment (F3,82 = 2.09, P = 
0.11) and treatment X genotype interaction (F3,82 =1.45, P = 0.23). There was a 
significant main effect for genotype (F1,82 = 7.38, P < 0.01), corroborating that the 
kinetics of the DA transporter are reduced in BDNF+/- mice versus wildtype mice (P 
< 0.01). Data are means ± SEMs (n = 4 – 5 mice per treatment group). ***P < 
0.001 compared to untreated BDNF+/- mice (two-way ANOVA). *P < 0.05 as 
compared to WT mice baseline (one-way ANOVA).  
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6.4.9 TrkB agonist, 7,8-DHF potentiates electrically evoked DA release in the CPu 

of only wildtype mice  

 The TrkB agonist, 7,8-DHF has been reported to be neuro-protective when 

administered prior to a DA-neurotoxic treatment using 1-methyl-4-phenyl-1,2,3,6-

tetrahydropyridine (MPTP).260 To examine the ability of 7,8-DHF to modulate 

presynaptic DA dynamics, a cumulative dose (0.01, 0.03, 0.1, 0.3, 1.0, 3.0, 10, and 30 

µM) of 7,8-DHF was applied to striatal brain slices following a stable, electrically evoked 

DA signal. The effect of 7,8-DHF on DA release and uptake processes was measured 

every 5 minutes for 30 minutes per dose in both wildtype and BDNF+/- mice. A dose 

response curve for the effect of cumulative dose of 7,8-DHF on electrically evoked DA 

release in wildtype mice was normalized to percent of baseline stimulated DA. In the 

wildtype mice 10 μM 7,8-DHF significantly increased stimulated DA release, where the 

half maximal effect (EC50 value) of 7,8-DHF is at ~ 150 ± 12 nM (n = 8, Figure 6.9C).  

With respect to BDNF+/- mice, there was no difference in DA release after perfusion of 

7,8-DHF (F8,90 = 0.014, P = 0.89). Stimulated DA release data from BDNF+/- mice was 

normalized with respect to wildtype mice since stimulated DA release levels are 

different under basal conditions (Figure 6.9C). Concentrations of 7,8-DHF greater than 

1 μM show an ~ 10% further reduction in stimulated DA release levels in BDNF+/- mice. 

These results in the BDNF+/- mice are surprising since we initially predicted that BDNF+/- 

mice would have a leftward shift in their dose response curve based on their results with 

BDNF perfusion. However, future studies are required to better understand how 7,8-

DHF induces DA release.  
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6.4.10 TrkB agonist, 7,8-DHF has no effect on DA transporter kinetics in the CPu 

across the genotypes  

 There was no difference in DA transporter Vmax rates in wildtype mice (F8,207 = 

0.32, P = 0.99, Table 1). While a one-way ANOVA revealed a significant main effect of 

7,8-DHF on the DA uptake rate in BDNF+/- mice (F8,89 = 3.19; P < 0.01, Table 1). Only 

concentrations 3.0 and 30 µM 7,8-DHF had a significantly decreased DA Vmax rates in 

BDNF+/- mice as analyzed by a Dunnett's post-test analysis (P < 0.05).  

Similar to BDNF, acutely applied 7,8-DHF does not affect striatal DA transporter kinetics 

in the wildtype mice. However, it is unknown what higher BDNF concentrations (> 200 

ng/mL) will do given its prohibitive cost. Thus, it is difficult to know if higher 

concentrations of BDNF would have a similar effect on DA transporter kinetics as 7,8-

DHF. Although it is possible that these high concentrations of 7,8-DHF (> 3.0 µM) are 

non-specific and activating other Trk receptor subtypes like TrkA and TrkC, we have not 

evaluated these receptor subtypes nor their ability to regulate presynaptic DA dynamics, 

and cannot rule out their contribution to presynaptic DA dynamics especially at these 

higher doses. Overall, the primary acute effect of 7,8-DHF does not appear to regulate 

striatal DA transporter kinetics in wildtype mice.  
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Figure 6.9: Effect of cumulative dose of TrkB agonist, 7,8-DHF on electrically 
evoked DA release in the CPu of WT and BDNF+/- mice. A) Current versus time 
trace of pre-drug DA signal with corresponding false color plot and cyclic 
voltammogram (inset). The false color plots present data in terms of time (x-axis) 
versus voltage (y-axis) versus current (color), where the green and blue colors 
denote oxidation and reduction current, respectively. The red triangle represents the 
point of electrical stimulation. B) Current versus time trace of electrically evoked DA 
release after a 30 minute perfusion of 10 µM 7,8-DHF with corresponding false color 
plot and cyclic voltammogram (inset). C) Dose response curve of the effect of 
cumulative dose of 7,8-DHF on electrically evoked DA release in WT and BDNF+/- 
mice, which is normalized to percent of wildtype baseline stimulated DA. In the 
wildtype mice, there was a significant main effect of 7,8-DHF on stimulated DA 
release (F8,204 = 0.18, P < 0.05) as determined by one-way ANOVA. A Dunnett’s 
post-test analysis indicated that 10 μM 7,8-DHF significantly increased stimulated 
DA release (P < 0.05) in wildtype mice. The cumulative dose of 7,8-DHF did not alter 
electrically evoked DA release in BDNF+/- mice (n = 3 - 4). Data are means ± SEMs.  
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6.4.11 K252a blocks the ability of 7,8-DHF to increases DA release in wildtype 

mice  

 To demonstrate that 7,8-DHF is mediating its effect through the TrkB receptor, 

K252a (30 nM) was applied to the brain slice prior to agonist application. The objective 

was to block the 7,8-DHF mediated increases in electrically evoked DA in wildtype mice. 

A concentration of 10 μM 7,8-DHF was applied to the slices; this dose was chosen 

because it potentiated stimulated DA release in wildtype mice with no effect on DA 

transporter kinetics. A one-way ANOVA showed a main effect that wildtype mice 

respond differently depending on TrkB treatment (F3,68 = 3.29; P < 0.05, Figure 6.10C). 

Wildtype mice showed an approximate 20% increase in stimulated DA release after 7,8-

DHF (P < 0.05) only. While there was no difference in stimulated DA release after 

K252a only. When wildtype striatal slices were pretreated with K252a followed by 7,8-

DHF applications, stimulated DA release was blocked. These results with K252a and 

7,8-DHF demonstrate that the potentiated stimulated DA release in wildtype mice is 

mediated via the TrkB receptor. Numerous reports have indicated that 7,8-DHF is an 

agonist for the TrkB receptor 261-268 and our results further confirm these previous 

findings. 7,8-DHF, like exogenous BDNF applications can quickly regulate trophic factor 

pathways leading to activation, and/or recruitment of DA release mechanisms. These 

results further highlight the hypothesis that enhancement of trophic factors or their 

agonist not only regulate long-term synaptic events such as synaptic plasticity, neuronal 

differentiation, or survival, but that there is an immediate response to trophic factors. 

Although with FSCV we have only evaluated DA in the CPu after 7,8-DHF, others have 

shown that this acute TrkB activation via BDNF is not exclusive to DA or monoamines 
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like serotonin, but influences other systems like GABA and glutamate.233, 239, 251   

6.4.12 K252a and 7,8-DHF have no effect on DA transporter kinetics in wildtype 

mice  

  To confirm that 7,8-DHF applications is exclusive to DA release dynamics, DA 

uptake rates were evaluated. A one-way ANOVA showed no effect of TrkB treatment on 

Vmax (F3,80 = 1.18, P = 0.32, Fig. 6B) in wildtype mice. By decreasing the amount of 

K252a that is bathed over the slice, we demonstrated that this lower dose could still 

inhibit TrkB release without effecting DA transporter kinetics in wildtype mice. Together, 

these results from wildtype mice confirm the hypothesis that 7,8-DHF is mediating DA 

release via the TrkB receptor in wildtype mice with no effect on DA uptake kinetics.  
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Figure 6.10: K252a blocks the effect of 7,8-DHF in the CPu of WT mice. A) 
Representative current verse time traces with corresponding cyclic voltammograms 
(inset) showing perfusion of 7,8-DHF potentiates DA release in the wildtype mice. 
B) Blocking the TrkB receptor with K252a inhibits the 7,8-DHF mediated increase in 
DA release shown by representative current versus time traces and cyclic 
voltamograms (inset) C) Perfusion of 10 µM 7,8-DHF significantly increases 
electrically stimulated DA release in the wildtype mice. Evoked DA release 
mediated by the TrkB agonist 7,8-DHF is blocked in presence of 30 nM K252a. D) 
Neither 30 nM K252a nor 10 µM 7,8-DHF altered DA uptake rate in wildtype mice. 
Data are means ± SEMs (n = 4 - 8 mice). Statistical significance was determined by 
one-way ANOVA with Dunnett's Multiple Comparison Test; *P < 0.05. 
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Table 6.1. The effect of TrkB agonist on dopamine uptake rates 

 

 

 

 

 

 

 

 

 

 

 

Significantly different from pre-drug control, **P < 0.01. 

 

 

 

 

 

 

 

 

 

Agonist table 

Genotype Agonist [Agonist] 
Vmax (µM/s) 
(Mean ± SEM) 

BDNF+/- 

BDNF 
(ng/mL) 

Pre-drug 2.2 ± 0.2 

50 2.2 ± 0.2 

100 2.2± 0.2 

200 2.3 ± 0.2 

7,8-DHF 
(µM) 

Pre-drug 3.0 ± 0.03 

0.010 3.0 ± 0.02 

1.00 2.7 ± 0.1 

30.0 2.4 ± 0.2** 

Wildtype 

Pre-drug 4.0 ± 0.01 

0.010 4.1 ± 0.12 

1.00 4.0 ± 0.1 

30.0 3.9 ± 0.2 
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6.5 Conclusions 

 A long-term goal in neuropharmacology has been to find small molecules that 

could mimic trophic factors and be easily administered where the small molecules could 

pass through the blood-brain barrier. With the recent discovery that 7,8-DHF is an 

agonist for TrkB receptors, numerous in vivo studies have shown that sub-acute 

applications of 7,8-DHF lead to many of the same benefits as that of a direct application 

of BDNF.260, 263, 265, 266 The results from this study highlight the utility of FSCV to probe 

acute, striatal BDNF/TrkB receptor mediated DA release and uptake. An advantage of 

using FSCV versus traditional synaptosomal models is that we can quickly measure 

both DA release and uptake in a close to normal physiological state. FSCV has shown 

that a more “physiological” stimulation (1 ms) potentiates stimulated DA release in the 

presence of 7,8-DHF and BDNF in wildtype and BDNF+/- mice, respectively. This 

divergent role between 7,8-DHF and BDNF activating DA release may be a result of 

using a mouse model with a 50% reduction in BDNF protein levels, where there are not 

only intrinsic alterations in the BDNF/TrkB system but other neuroadaptions throughout 

the brain that are still unaccounted for. Our FSCV results are not limited to the 

evaluation of a TrkB agonist, but we also examined tyrosine kinase inhibitors. K252a did 

not have any effect on stimulated DA release except at the highest dose (3 μM), while 

concentrations greater than 1 μM altered DA transporter kinetics. Since DA uptake Vmax 

was altered in both genotypes at concentrations greater than 1 μM of K252a, this 

suggests a promiscuous response. Although K252a is often described as a TrkB 

inhibitor, it is a non-selective protein kinase inhibitor that inhibits PKC, Ca2+/calmodulin-

stimulated phosphodiesterases (IC50 = 1.3 - 2.9 μM from Tocris on-line catalog), MLCK 
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(Ki = 20 nM from Tocris on-line catalog) and receptor tyrosine kinases, suggesting that 

TrkB or some other signaling system that K252a inhibits is influencing DA transporter 

uptake rates.  Genistein did not have any effect of stimulated DA release but at high 

concentrations, it did significantly attenuated DA uptake. Tryphostin 23, on the other 

hand, decreased both DA release and uptake in both genotypes of mice examined. By 

using FSCV, we were able to delineate a more comprehensive understanding of how 

TrkB receptor activation can modulate presynaptic DA dynamics using BDNF, a TrkB 

receptor agonist, or inhibitors. 
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CHAPTER 7 

Summary and Conclusions  

 The striatal dopamine (DA) system is a key player in learning, memory, motor 

functions, and reward related behaviors, and has been implicated in neurological 

disorders including addition.2, 3, 14 Thus, understanding the DA system is crucial to 

provide the opportunity for new and improved therapeutic options for addiction as well 

as other neurological disorders. The present study was undertaken to: 1) provide insight 

into how toluene exposure modulates the striatal DA system, and 2) understand how 

the protein; brain-derived neurotrophic factor (BDNF), modulates striatal DA dynamics. 

The present chapter highlights the findings from these two main projects discussed in 

this dissertation and suggests future studies that will provide further insight to the 

present work. 

7.1 Understanding how toluene modulates the DA system 

 Toluene inhalation has debilitating consequences on mental health.47, 49, 192 

However, not much is known about toluene’s exact neural target. Although existing 

evidence has shown that toluene abuse influences the DA system, the mechanism 

underlying toluene’s effect on the DA system remains elusive.36, 38 In the present study, 

behavioral assays and neurochemical techniques were employed to better understand 

the effect of toluene inhalation on the DA system. Behavioral assays serve as a 

complimentary tool to neurochemical assays, since changes in behavior predict 

possible neurochemical effects of toluene.34, 138, 141 The behavioral assays also provide 

the opportunity to identify possible similarities between abused toluene and other drugs 

of abuse whose neurobehavioral profiles have been well characterized in animal 
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models.56 Neurochemical technique such as slice fast scan cyclic voltammetry (FSCV) 

provides the ability to monitor the fast DA dynamics such as release and uptake and to 

assess toluene’s effect on the functionality of the DA autoreceptors. In vivo 

microdialysis provides the ability to monitor extracellular DA levels, whereas tissue 

content analysis enables evaluation of toluene’s effect on intracellular DA levels and its 

catabolism. In all, two main exposure models were used: an acute toluene exposure 

model, which allowed evaluation of how brief exposure to toluene modulates the striatal 

DA system and a repeated toluene model which enabled the impact of chronic toluene 

inhalation on the DA system to be examined.  

 Using behavioral testing, we characterized the effect of acute and repeated 

toluene exposure on locomotor activity in mouse models. The results suggest a biphasic 

response where acute toluene exposure increased locomotor activity, while repeated 

toluene exposure caused sensitization to toluene induced locomotor activity. Our 

working hypothesis was that these differences in locomotor activity were linked to 

alterations in the striatal DA system. To test this hypothesis, the first objective was to 

characterize the effect of toluene inhalation on DA dynamics using FSCV. For the acute 

experiment, mice were exposed to 30 minutes of toluene inhalation followed by 30 

minutes of recovery before FSCV measurements were made. In the repeated model, 

mice were treated to the same routine for seven consecutive days and neurochemical 

measurements were obtained on the eighth day to evaluate the long-term effect of 

chronic toluene inhalation. FSCV data revealed that acute toluene exposure potentiates 

electrically evoked DA release across the striatum (caudate putamen, CPu; nucleus 

accumbens, NAc core and shell), while repeated toluene inhalation attenuates 
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electrically evoked DA release in the NAc core and shell but not in the CPu. Acute or 

repeated toluene exposure does not affect DA uptake rate in the striatum. Taken 

together, these acute and repeated toluene measurements suggest that repeated 

toluene exposure has the opposite effects on DA dynamics compared to acute 

exposure. On the basis of these initial data, our hypothesis was that repeated toluene 

exposure would lead to downward regulation of DA release in the NAc, which may be 

mediated by DA autoreceptors. DA autoreceptors play an important role in regulating 

extracellular DA levels by modulating DA release and synthesis.182, 194-197 Across the 

striatum, DA D3 autoreceptors are predominantly expressed in the NAc than in CPu 

while DA D2 autoreceptors are homogenously expressed across the striatum.182-186 

Since the attenuation in DA release caused by repeated toluene exposure was 

exclusive to the NAc, we suspected that DA D3 autoreceptors would be involved in 

toluene’s mechanism of action.  

Building on our initial neurochemical characterization, the acute toluene exposure 

model was modified by excluding the recovery phase from the regimen whereas in the 

repeated model, neurochemical measurements were made on the seventh day 

immediately after the seventh toluene exposure. The changes made to these exposure 

protocols were to gain a better understanding of the immediate effects of toluene 

treatment on the DA system. Using FSCV, we confirmed that acute toluene inhalation 

potentiates DA release across the striatum, while repeated toluene exposure decreases 

DA release in the NAc core. Overall, acute toluene exposure had no effect on DA 

uptake in the striatum, but the only exception was the NAc shell, which showed an 

elevation in DA uptake only at a low toluene dose. For repeated toluene exposure, there 
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was no difference in DA uptake rates in the CPu, but DA uptake appeared altered in the 

NAc. Furthermore, the follow up experiments extended the preliminary work by showing 

that these toluene-induced alterations in the striatum are not mediated by DA D3 

autoreceptors as previously proposed. To examine the influence of toluene exposure on 

extracellular DA levels, a toluene exposure set-up that allowed toluene exposure and in 

vivo microdialysis measurements to be made simultaneously was constructed. This set-

up also allowed monitoring of locomotor behavior of the mice during microdialysis 

measurement. Microdialysis data showed that the potentiation in DA release induced by 

acute toluene exposure (as measured by FSCV) does not lead to increased 

extracellular DA level in the CPu, even though the behavior data taken simultaneously 

showed increased locomotor activity. Thus, it appears that the increase in locomotor 

activity was not mediated by extracellular DA levels in the CPu. Furthermore, acute 

toluene exposure did not alter intracellular DA levels as measured by tissue content 

analysis, suggesting that the increase in stimulated DA release induced by acute 

toluene exposure (as measured by FSCV) was not a result of elevated intracellular DA 

levels or excess DA accumulation in vesicles. However, there were decreases in DA 

catabolism in both the CPu and NAc as measured by tissue content (Figure 7.1). 

Meanwhile, repeated toluene exposure elevated extracellular DA levels in the NAc, 

which we believe may be the alteration underlying the sensitization effect on locomotor 

activity observed previously in our behavior characterization. On the other hand, 

repeated toluene exposure did not alter intracellular DA levels or DA catabolism across 

the striatum as shown by the tissue content data (Figure 7.1). 
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 Overall, with no effect of acute toluene exposure on DA uptake, DA D3 

autoreceptors, extracellular and intracellular DA levels, it is most likely that toluene’s 

action on stimulated DA release is mediated through an indirect mechanism rather than 

a direct action on DA autoreceptors or synthesis. However, exactly how toluene is 

influencing DA release is not known. Significant evidence has shown that toluene 

influences glutamate receptors and gamma-aminobutyric acid (GABA) receptor 

GABAA,
78-80 as well as toluene’s influence on voltage-gated calcium, potassium, and 

sodium channels.37, 269-271 In addition, there are reports that have shown that both acute 

and chronic toluene treatment can stimulate the generation of reactive oxygen (ROS) 

and reactive nitrogen species (RNS) in the brain, which can interfere with the functions 

of enzymes, receptors, and ion channels.272, 273 It is therefore possible that toluene 

could be influencing the DA system through these non-DA receptors and ion channels 

that have been implicated in toluene’s neural action. In the work done by Avshalumov 

and colleagues, a mechanism underlining normal striatal DA release process was 

presented.274 In their work, slice FSCV was used to demonstrate that striatal DA release 

can be modulated by glutamate and GABA receptors through a ROS; hydrogen 

peroxide (H2O2).
274 Since there are no glutamate and GABA receptors on the DA 

terminal, this modulatory effect has been described as an indirect mechanism, where 

the H2O2 mediating the effect is produced in a non-DA cell.274-276 Interestingly, the 

actions of glutamate and GABA in this mechanism are independent of their conventional 

roles in excitatory and inhibitory circuitries, respectively.274 In this mechanism, activation 

of glutamate receptor; alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid 

(AMPA) receptors, generates H2O2 that diffuses to the DA terminal where it opens 
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potassium channels causing hyperpolarization of the DA neuron and in turn decreases 

DA release.274 However, activation of GABAA receptors is proven to inhibit this H2O2 

mediating effect causing an increase in DA release.274 Since the key mediators in this 

proposed pathway have been implicated in toluene’s action, it is possible that their 

perturbation by acute or repeated toluene inhalation could lead to these alterations in 

DA release.274 However, future studies will be necessary to validate this assertion.  

7.1.1 Overall conclusion and future direction 

 Taken together, the present work has utilized behavior and neurochemical 

techniques as complementary tools to provide useful insight into how the abuse solvent 

toluene modulates the striatal DA system. The findings from the present work have led 

us to propose that toluene’s action on the striatal DA release process may be mediated 

through an indirect mechanism that involves other neurotransmitters such as glutamate 

or GABA as well as the neuromodulator H2O2. Future studies are recommended to 

examine this hypothesis by examining how inhibition or activation of these non-DA 

receptors and ROS would influence toluene-induced alterations in the DA system, 

particularly DA release. 
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Figure 7.1: Schematic diagram summarizing the effects of toluene exposure 
on striatal DA system. Acute toluene treatment involved 30 minutes toluene 
inhalation followed by neurochemical measurements. Repeated toluene exposure 
involved 30 minutes toluene treatment for 7 consecutive days followed by 
neurochemical measurements. Striatal regions examined were caudate putamen 
(CPu), nucleus accumbens (NAc) core and shell. DA parameters examined include 
release and uptake as well as autoreceptor functionality measured by slice fast 
scan cyclic voltammetry (FSCV); extracellular DA levels measured by in vivo 
microdialysis; intracellular DA and metabolites measured by tissue content analysis. 
Definitions from the diagram: L-DOPA, L-3,4-dihydroxyphenylalanine; VMAT, 
vesicular monoamine transporter; DAT, dopamine transporter; MAO, monoamine 
oxidase, COMT, catechol-O-methyltransferase; HVA, homovanillic acid; Gi and Gs, 
G-protein coupled receptors; AC, adenylyl cyclase; cAMP: cyclic adenosine 
monophosphate.  
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7.2 Probing the ability of presynaptic tyrosine kinase receptors to regulate striatal 

DA dynamics  

 Overall, the second objective of the present work seeks to understand how 

BDNF modulates striatal DA dynamics. Since BDNF executes its neurotrophic functions 

via activation of TrkB receptors, the main goal was to examine how these TrkB 

receptors mediate the effect of BDNF on striatal DA dynamics. To achieve this goal, 

slice FSCV’s ability to monitor the action of tyrosine kinase (Trk) receptors on DA 

release and uptake was first assessed in the CPu of BDNF-deficient mice and their 

wildtype counterparts. Previously, it was shown that activation of TrkB receptors by 

exogenous BDNF increased electrically stimulated DA release, so we expected that 

application of a Trk antagonists would decrease electrically stimulated DA release.94 

Herein, we demonstrated FSCV’s ability to measure Trk receptor mediated changes in 

the DA dynamics by showing that the presence of Trk antagonist, genistein decreases 

only DA uptake while a more potent antagonist; Tyrphostin 23, decreases DA release 

and uptake in both groups of mice examined. In subsequent experiments, we 

characterized the functional effect of TrkB receptors on DA release and uptake using 

BDNF, 7,8-dihydroxyflavone (7,8-DHF) and K252a (Figure 7.2). 7,8-DHF is a recently 

discovered TrkB agonist shown to have similar ability to influence presynaptic DA 

dynamics like BDNF.260 The abilities of BDNF and 7,8-DHF to increase striatal DA 

release were demonstrated. The ability of BDNF and 7,8-DHF to elevate stimulated DA 

release were abolished by the TrkB receptor antagonist, K252a. Hence BDNF and 7,8-

DHF modulate striatal DA release through activation of TrkB receptors.  
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7.2.1 Overall conclusion and future direction 

 Taken together, our findings demonstrated FSCV’s ability to measure Trk 

mediated alterations in the presynaptic DA dynamics. The unique advantage that FSCV 

brings to studying the protein BDNF is its high temporal resolution of up to 100 ms that 

allows monitoring of BDNF’s influence on DA dynamics in real time. Additionally, FSCV 

allows monitoring of DA release and uptake simultaneously.  

 Overall, the results from the present work support the assertion that BDNF 

modulates striatal presynaptic DA release through activation of TrkB receptors. 

However, the intracellular signaling cascades that mediate this action of TrkB receptors 

on presynaptic DA release are not well understood. The intracellular signaling cascades 

that are evoked upon Trk activation are categorized into three main pathways: 

phospholipase Cγ (PLCγ), the Ras/mitogen activated protein kinase (MAPK), and 

phosphatidylinositol-3-kinase (PI3K).2, 19, 29 These intracellular signaling cascades are 

known to mediate several biological functions including neurotransmitter release (Figure 

7.2).2, 19-21, 29, 277 Future studies should further the present work by using FSCV to probe 

how TrkB receptors and their intracellular signaling components modulate presynaptic 

DA release and uptake in the striatum.  
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Figure 7.2: Schematic diagram showing a summary of the present work and 
recommended studies to understand how TrkB modulates DA dynamics. The 
functional effect of TrkB was examined using exogenous brain derived neurotrophic 
factor (BDNF); TrkB agonist, 7,8-dihydroxyflavone (7,8-DHF), and TrkB antagonist 
including tyrphostin 23 (AG18) and K252a. Present work demonstrated that BDNF 
modulate striatal DA release through activation of TrkB. The suggested study 
focuses on the mechanism underlining how TrkB activation influences the striatal 
DA dynamics by probing intracellular signaling cascade: Ras/mitogen activated 
protein kinase (MAPK) pathway, Phosphatidylinositol-3-kinase (PI3K) pathway and 
phospholipase Cγ (PLCγ) pathway. 
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ABSTRACT 
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 Dopamine (DA) neurons in the striatum mediate several functions of the brain 

and have been linked to a host of neurological disorders including Parkinson’s disease 

and addiction, both of which occur as a result of dysfunction in the DA system. In the 

present study, our first objective was to understand how the striatal DA system adapts 

to acute and repeated administration of inhalant toluene. The use of toluene as inhalant, 

like other drugs of abuse, is known to perturb DA neurotransmission in the brain reward 

pathway. However, the exact mechanism underling toluene’s influence on striatal DA 

neurotransmission is unknown. The current work utilized behavior assays and 

neurochemical techniques such as slice fast scan cyclic voltammetry (FSCV), in vivo 

microdialysis, and brain tissue content analysis to examine how toluene inhalation alters 

the striatal DA system. Overall, both behavior and neurochemical data confirmed that 

toluene inhalation alters stimulated DA release in striatum. Mechanistically, the 

neurochemical data indicated that acute toluene inhalation potentiates striatal DA 

release and catabolism but there is no difference on DA uptake or extracellular DA 

levels in the caudate putamen (CPu). Furthermore, toluene induced potentiation in DA 



www.manaraa.com

210 
 

 
 

release is not mediated by DA D3 autoreceptors. Meanwhile, chronic toluene exposure 

attenuated DA release only in the nucleus accumbens (NAc). Repeated toluene 

exposure also increased extracellular DA levels in the NAc, which is typical of addictive 

drugs. However, repeated toluene inhalation had no effect on DA D3 autorecepetors, 

and DA catabolism. Taken together, the present data suggest that acute or repeated 

toluene alters the striatal DA system through indirect neuronal action. 

 The second objective was to understand how brain derived neurotrophic factor 

(BDNF) modulates striatal DA dynamics. Aside from its conventional role as a 

neurotrophic factor, BDNF has also been implicated in synaptic transmission and 

neurological disorders. Since BDNF mediates it neurotrophic functions through tyrosine 

kinase receptor TrkB, the functional effects of tyrosine kinase receptor TrkB on the 

striatal DA release and uptake rate were examined. This work utilized FSCV to evaluate 

the effect of exogenous BDNF, TrkB agonist; 7,8-dihydroxyflavone (7,8-DHF), and TrkB 

antagonists; genistein, tyrphostin 23, and K252a, on DA dynamics in the CPu of brain 

slices obtain from BDNF deficient (BDNF+/-) mice and their wildtype littermates. Overall, 

the results obtained highlighted the utility of FSCV to probe the functional effect of Trk 

receptors on DA dynamics. The results also showed that activation of TrkB receptors 

with exogenous BDNF and 7,8-DHF potentiated presynaptic DA release in BDNF+/- and 

wildtype mice respectively, with no effect on DA uptake. However, concentrations 

greater than 3 μM 7,8-DHF attenuated DA uptake rates in only BDNF+/− mice. In the 

presence of K252a, the BDNF or 7,8-DHF induced potentiation of DA release was 

abolished, suggesting that the effect of BDNF or 7,8-DHF on presynaptic DA release is 

TrkB mediated. 
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